=
.2
i
=
o
=
o
S
©
e
(7}
D
o
c
S
=
1]
=
o
Q.
(7]
=
o
S
[t
—
o
-
o
Q
=
=
©
(=3
(]
o
=
©
-
= |

4501 South 2700 West -

P.O. Box 148410 - SLC,UT 84114-8410

Report No. UT-24.16

ACTIVITY-BASED MODEL
IMPLEMENTATION AND
ANALYSIS CONSIDERATIONS

Prepared For:

Utah Department of Transportation
Research & Innovation Division

Final Report
September 2024



DISCLAIMER

The authors alone are responsible for the preparation and accuracy of the information,
data, analysis, discussions, recommendations, and conclusions presented herein. The contents do
not necessarily reflect the views, opinions, endorsements, or policies of the Utah Department of
Transportation or the U.S. Department of Transportation. The Utah Department of
Transportation makes no representation or warranty of any kind, and assumes no liability

therefore.

ACKNOWLEDGMENTS

The authors acknowledge the Utah Department of Transportation (UDOT) and the
Wasatch Front Regional Council (WFRC) for funding this research, and the following
individuals from UDOT, WFRC, and the Mountainland Association of Governments (MAG) on
the Technical Advisory Committee for helping to guide the research:

e Robert Chamberlin (Consultant Project Manager)

e Natalia Brown

e Andy Li

e Bert Granberg
o Bill Hereth

e Chris Day

e Chad Worthen
e Matt Delora
e Tim Hereth



TECHNICAL REPORT ABSTRACT

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
UT-24.16 N/A N/A

4. Title and Subtitle 5. Report Date
Activity-Based Model Implementation and Analysis Considerations September 2024

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.
Gregory S. Macfarlane, Hayden Atchley, Kamryn Mansfield, Tim
Baird, and Craig Gresham

9. Performing Organization Name and Address 10. Work Unit No.
Brigham Young University 5H092 66H
Department of Civil and Construction Engineering 11 Contracior Grant No.
430 Engineering Building 23.8828
Provo, UT 84602
12. Sponsoring Agency Name and Address 13. Type of Report & Period Covered
Utah Department of Transportation Final
4501 South 2700 West September 2022 to July 2024
P.O. Box 148410 14. Sponsoring Agency Code
Salt Lake City, UT 84114-8410 PIC No. UT22.401

15. Supplementary Notes
Prepared in cooperation with the Utah Department of Transportation and the U.S. Department of
Transportation, Federal Highway Administration

16. Abstract

Tour-based and activity-based travel demand models are generally considered more theoretically robust
compared to their trip-based counterparts, as activity-based models (ABMs) explicitly model individuals making
travel choices in contrast to the aggregate nature of trip-based models. There have been a number of comparisons
between trip- and activity-based models, but these comparisons focus almost exclusively on the technical ability
of the two model types, while not considering the practical benefits an ABM may or may not have to a
transportation agency. This research performs a more holistic comparison between trip- and activity-based
models, focused specifically on the practical differences between model types, both in terms of usability and
capability for complex analysis. We use the existing Wasatch Front model as a representative trip-based model,
and an ActivitySim implementation in the same area as a representative ABM. We create three hypothetical
scenarios in both models: a change in land use, an improvement to commuter rail service, and an increase in
remote work. We discuss the process of creating each scenario in both models, and perform several example
analyses with each scenario and model. We find that many commonly cited reasons for the lack of ABM adoption
may not be as applicable as previously thought. ABMs are often considered more complicated than trip-based
models, requiring more data and computational resources. While ABMs do require more input data, we found
that in our case the complexity of the model and the computational resources required were similar between
model types. Additionally, the ABM allows for much more intuitive and straightforward interpretation of results.

17. Key Words 18. Distribution Statement 23. Registrant's Seal
Travel demand modeling, activity-based models, Not restricted. Available through:
transportation forecasting. UDOT Research Division N/A

4501 South 2700 West

P.O. Box 148410
Salt Lake City, UT 84114-8410
www.udot.utah.gov/go/research

19. Security Classification 20. Security Classification 21. No. of Pages 22. Price

(of this report) (of this page)
129 N/A
Unclassified Unclassified



http://www.udot.utah.gov/go/research

TABLE OF CONTENTS

TABLE OF CONTENTS . ... v
LIST OF TABLES. ...ttt n e ne e e ns \l
LIST OF FIGURES ... .ottt sttt et e beesnee s VI
UNIT CONVERSION FACTORS ...ttt et X
LIST OF ACRONYIMS ...ttt bbbt b et e et et e et e beenneas Xl
EXECUTIVE SUMMARY .ottt et n e snn e ree s 1
1.0 INTRODUCGTION ...ttt ettt et ss e e nme e sb e et e e e b e e nnneeneenneas 2
2.0 LITERATURE REVIEW ...t 5
2.1 OVerview OF MOGel TYPES ...cuoiiiieieieee e 6
2.2 Comparison of Modeling Frameworks ...........ccocuoiiiiiiiineic e 7
2.2.1 POPUIALION DAL ......ccuviiitiieiitesie ettt b e bbb 8
2.2.2 TraVel BENAVIOT ......ocviiiiiicie bbb 11

2.3 Lack of ABM AdOPLION ......cciiiieciece ettt 16
2.4 RESEAICH GAP ...viiviiieceee et rs 17
3.0 METHODOLOGY ...ttt ettt ettt ettt sbe et e e be e enteesneeenbeesreeanneens 20
3L W MO ...ttt 20
B A Xox 11711751 |11 ISP PPPRPTRPR 25
3.3 Initial Model Comparison/Calibration...........ccccoccveiieiiic i 30
3.3.1 Validation of the Synthetic PoOpulation ...........c.cccovvviiiiiciii e 31



3.3.2 Validation and Calibration of ACtIVItYSIM ........cccoceiiiiiiiiie e 36

3.4 EXAMPIE SCENAIIOS. ...c.uiiieiiieie ettt ra et et e et e e e teeeeeneenrs 46
4.0 SCENARIO 1: CHANGE IN LAND USE .......ooiiiie e 48
4.1 SCENATO CrBALION ....eiuieiiite ettt ettt bttt b bbb 49
4.2 SCENATO ANAIYSIS. ...ttt 50
5.0 SCENARIO 2: IMPROVED TRANSIT SERVICE ..o 59
5.1 SCENAMO CrEALION.......eeiuiitiieiiete ettt b et 61
5.2 SCENAMIO ANGIYSIS.....eciiiieiiieie ettt et sb et e et sre et e e reeaeeneers 61
6.0 SCENARIO 3: INCREASE IN REMOTE WORK ......coiiiiiiiiei e 70
6.1  Considerations for Modeling Remote WOrk...........cccooeiiiiiiiininieecec e 71
6.2 SCENAMO CrEALION.......eiiuitiieiieter ettt 72
7.0 CONCLUSIONS AND RECOMMENDATIONS ...t 79
7.1 Computational RESOUICES ........ceeivieieiieiie ettt sre et reeee e nas 80
7.2 Complication of MOGEl DESIGN......c..couiiiiiiiiiiiieieeee s 82
7.3 Model INteroperability .........cocooiiiiiieiee s 83
7.4 Training REQUITEIMENTS. .....couiiiiiiieicie et 84
7.5  RECOMMENAALIONS . ...c.eitiiiitiiiieie e 87
REFERENGCES ... oottt ettt ekttt e sb e e et e et e e e nbeenne e 90
8.0 PRACTITIONER INTERVIEW FINDINGS.......ccooi e 96
8.1  RESEAICH OVEIVIBW ...ttt bbb 96



8.2 INEIVIEW FINAINGS ....veieiecie ettt e e re e 96

8.2.1 INEIVIEW OULIINE ... 96
8.2.2 WHEN ANU WRY ... 98
8.2.3 DEVEIOPMENT PrOCESSES ....c.viviiieiieiieieie sttt 99
8.2.4 RESOUICE NEEUS......eeutititiiti sttt bbbt e bbb 100
8.2.5 ABIM BENETILS ...t 101
8.2.6 ABIM DOWNSIAES/ISSUES........cvimeeiiiiiieniaiinte ettt 101
8.2.7 MIXEU IMPACES ....eevieiieeiece sttt e b e e ste e e sreesneeneesraeeeas 103
8.2.8 OVerall EVAlUALION ......c.oiiiiiiiiieeee s 104
8.2.9 Clarity on Goals of Advanced MOdEIS............ccoouviiiiiiiiiiee s 108
8.2.10 Differences Between Early and Late AdOPLErS.........cccevveveiiieiieie e 109
8.2.11 Staff/AQeNCY CaAPACILY ........cecivieieiieie ettt sraeae s 110
8.3  Development Timeline and Model Transition ProCESS...........ccoevvvevveivieieeviesieseenens 111
8.3.1 MOdel INFraSIIUCTUIE ......oviiiiiiiiieieeiee e 112
8.3.2 Collaboration FrameWOrKS. .........ccuciiiiiiiiieii e 114
8.3.3 HYDIA MOGEIS ... s 115

Vi



LIST OF TABLES

Table 3.1 Income Groups in the WF MOdel .........c.cooveiiiieiieeccceee e 23
Table 3.2 Life Cycle Categories in the WF Model ............cccovviiiiiiiiic e 23
Table 3.3 PopulationSim Control Totals by Geography and Source.........c.cccevevvveviiieiieseeenn, 30
Table 3.4 Crosswalk of Modes in WF Model and ACHIVItYySIm ........cccccevveviiieniecie e 38
Table 3.5 Comparison of Mode Split Between Models After Calibration .............cccccccevveiennen. 41
Table 3.6 Work-From-Home Submodel Choice Coefficients in ActivitySim ............cccoeeeveenee. 44
Table 3.7 Telecommute Frequency Submodel Choice Coefficients in ActivitySim................... 45
Table 3.8 Telecommute Rates and Coefficients by Job INAUSEIY .........ccccovveviiiciicce e, 46
Table 3.9 Daily Activity Pattern Submodel Coefficients in ActivitySim.........ccccceevvvveiieieennenn, 46
Table 4.1 TAZ-Level Socioeconomic Data for the Point (Baseline Scenario)............ccccceevveenee. 49
Table 4.2 TAZ-Level Socioeconomic Data for the Point (Land Use Scenario)............c.ccccueeneee. 49
Table 5.1 Change in Mode Split with Improved Transit ............c.cooeiiiieiie e 62
Table 5.2 Example Socioeconomic Analysis of Transit Trips (WF Model) ..........ccccoevveveenee. 67
Table 5.3 Example Socioeconomic Analysis of Transit Trips (ActivitySim) ..........cccccevvveveennene. 68
Table 6.1 Change in Mode Split After Increased Remote Work Rates.............ccccvvevviieiecsieennenn, 74
Table 6.2 Telecommute Rates and Coefficients by Job INAUSEIY ..........cccooveviiieiicce e, 75
Table 6.3 Comparison of Trips Taken and Miles Traveled (WF Model) ...........cccceveiiieieennn, 77
Table 6.4 Comparison of Trips Taken and Miles Traveled (ActivitySim).........cccoceevviviviiieennn. 78
Table 7.1 Estimated Time Spent on Modeling TasKS ........cccovveiieiiieiiiiiie e 85
TADIE 8.1 INTEIVIBWEERS ... bbbt nr b 97
Table 8.2 Agency CompPariSON IMALIIX........cueiueeiieiiieiie e sre e 106

vii



LIST OF FIGURES

Figure 2.1 Flow of data in an aggregate model (a) and a disaggregate model (b)............ccccuvnes 12
Figure 2.2 Example trip distribution using aggregate data. There is little information on who is
making which trips, and it is not known how trips are related to each other.............c.cccccoevnenes 15
Figure 2.3 Example trip distribution using trip-based microsimulation (a) and activity or tour-
Dased MOAEIS (10). ...veeeeeiece e raere s 16
Figure 3.1 WF model flowchart. The distribution step includes a feedback loop where
preliminary loaded network skims are used to perform subsequent iterations of trip distribution
until the distribULION CONVEIGES. ......ccuiiiiiieie et te e esae e sreeae s 22
Figure 3.2 Activity Sim model fFIOWChart. ............cooiiiii e 27
Figure 3.3 Population by district, PopulationSim compared to the WF TAZ-level socioeconomic
0L e TSSOSO PP POUSPRPPURPN 32
Figure 3.4 District-level median income, PopulationSim compared to the WF TAZ-level
SOCIOBCONOIMIC UALAL ...ttt bbbt bbbt b bbb nn et ab e 34
Figure 3.5 Households in each income group, PopulationSim compared to the WF TAZ-level
SOCIOBCONOIMIC UALAL ....vetieeieeie ettt bbbt b bbbt b bbb nn et ab e 35
Figure 3.6 Distribution of TAZ median income, PopulationSim compared to the WF TAZ-level
SOCIOBCONOIMIC UALAL ...ttt bbbt bbbt b bbb nn et ab e 37
Figure 3.7 Mode choice calibration, target (WF) vs. ActivitySim shares over several iterations. 40
Figure 3.8 Comparison between models of trip-length frequency distribution................c........... 43
Figure 4.1 Trip-miles produced in updated zones in the land use scenario (WF model). ............ 52
Figure 4.2 Trip-miles of individuals living in the updated zones (ActivitySim). Many of these

trips do not have an origin or destination in the home zone of the individual................cc..cco....... 52

viii



Figure 4.3 Desire lines of home-based trips produced in the new development in the WF model,

0201110 L= USSR 56
Figure 4.4 Desire lines of non—home-based trips made in the WF model, by mode.................... 57
Figure 4.5 Desire lines of trips made in ActivitySim by mode. .........ccccocevivevieie i 58
Figure 5.1 Map of the FrontRunner commuter rail line...........ccccce i 60

Figure 5.2 Trip modes of individuals who switched modes with improved commuter rail service. . 65
Figure 5.3 At-work subtour trip modes of individuals who switched their work mode away from
“Drive-Alone” N ACHVIEYSIITL. 1..viiiiiiiiiiiiieiii e s 66
Figure 5.4 Income distribution of transit riders in both models. We used the distribution of

production TAZ median income weighted by transit trips for the WF model, while we used the

actual income distribution of transit riders for ACtivitySim. .........cccccoveviiii i 69
Figure 6.1 WF model remote WOFK FALES. .........ccuiiiiiieiicie et 71
Figure 8.1 Triangle Regional Model Hybrid StrucCture............ccocveveiieieeie e 118



UNIT CONVERSION FACTORS

SI* (MODERN METRIC) CONVERSION FACTORS

APPROXIMATE CONVERSIONS TO SI UNITS
Symbol When You Know Multiply By To Find Symbol
LENGTH
in inches 25.4 millimeters mm
ft feet 0.305 meters m
yd yards 0.914 meters m
mi miles 1.61 kilometers km
AREA
in® square inches 645.2 square millimeters mm?
ft* square feet 0.093 square meters m*
yd? square yard 0.836 square meters m?
ac acres 0.405 hectares ha
mi? square miles 259 square kilometers km?
VOLUME
floz fluid ounces 29.57 milliliters mL
gal gallons 3.785 liters L
ft* cubic feet 0.028 cubic meters m°
yd® cubic yards 0.765 cubic meters m?
NOTE: volumes greater than 1000 L shall be shown in m*
MASS
oz ounces 28.35 grams g
Ib pounds 0.454 kilograms kg
T short tons (2000 Ib) 0.907 megagrams (or "metric ton") Mg (or "t")
TEMPERATURE (exact degrees)
°F Fahrenheit 5 (F-32)/9 Celsius e
or (F-32)/1.8
ILLUMINATION
fe foot-candles 10.76 lux Ix
fl foot-Lamberts 3.426 candela/m’ cd/im®
FORCE and PRESSURE or STRESS
Ibf poundforce 4.45 newtons N
Ibffin® poundforce per square inch 6.89 kilopascals kPa
APPROXIMATE CONVERSIONS FROM Sl UNITS
Symbol When You Know Multiply By To Find Symbol
LENGTH
mm millimeters 0.039 inches in
m meters 3.28 feet ft
m meters 1.09 yards yd
km kilometers 0.621 miles mi
AREA
mm? square millimeters 0.0016 square inches in’
m? square meters 10.764 square feet ft*
m? square meters 1.195 square yards yd®
ha hectares 2.47 acres ac
km? square kilometers 0.386 square miles mi®
VOLUME
mL milliliters 0.034 fluid ounces floz
L liters 0.264 gallons gal
m? cubic meters 35.314 cubic feet it
m?® cubic meters 1.307 cubic yards yd®
MASS
g grams 0.035 ounces oz
kg kilograms 2.202 pounds Ib
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 Ib) T
TEMPERATURE (exact degrees)
i Celsius 1.8C+32 Fahrenheit °F
ILLUMINATION
Ix lux 0.0929 foot-candles fc
cd/m® candela/m’ 0.2919 foot-Lamberts fl
FORCE and PRESSURE or STRESS
N newtons 0.225 poundforce Ibf
kPa kilopascals 0.145 poundforce per square inch Ibf/in’

*Sl is the symbol for the International System of Units. (Adapted from FHWA report template, Revised March 2003)




ABM

ASC

DAP

TAZ

WFRC

LIST OF ACRONYMS

Activity-based model
Alternative-specific constant
Daily activity pattern
Transportation analysis zone

Wasatch Front Regional Council

Xi



EXECUTIVE SUMMARY

Tour-based and activity-based travel demand models are generally considered more
theoretically robust compared to their trip-based counterparts, as activity-based models (ABMs)
explicitly model individuals making travel choices in contrast to the aggregate nature of trip-
based models. There have been a number of comparisons between trip- and activity-based
models, but these comparisons focus almost exclusively on the technical ability of the two model
types, while not considering the practical benefits an ABM may or may not have to a
transportation agency. This research performs a more holistic comparison between trip- and
activity-based models, focused specifically on the practical differences between model types,
both in terms of usability and capability for complex analysis. We use the existing Wasatch Front
model as a representative trip-based model, and an ActivitySim implementation in the same area
as a representative ABM. We create three hypothetical scenarios in both models: a change in
land use, an improvement to commuter rail service, and an increase in remote work. We discuss
the process of creating each scenario in both models, and perform several example analyses with
each scenario and model. We find that many commonly cited reasons for the lack of ABM
adoption may not be as applicable as previously thought. ABMs are often considered more
complicated than trip-based models, requiring more data and computational resources. While
ABMs do require more input data, we found that in our case the complexity of the model and the
computational resources required were similar between model types. Additionally, the ABM

allows for much more intuitive and straightforward interpretation of results.



1.0 INTRODUCTION

In travel demand modeling, activity-based models (ABMs)* have been championed by
researchers and many practitioners as being theoretically superior to the trip-based models
historically used in transportation planning efforts since the 1950s (Rasouli and Timmermans,
2014). ABMs explicitly model individuals, in contrast to the aggregate nature of trip-based
models, and so in theory are able to represent travel behavior more accurately. Additionally, the
focus on individuals in an ABM can allow for more detailed post-hoc analysis of model outputs
compared to a trip-based model.

There have been a number of comparisons and case studies between trip- and activity-
based models (Ferdous et al., 2012; Mouw, 2022; Zhong et al., 2015), but these comparisons
focus almost exclusively on the technical ability of the two model types. There is little discussion
in the literature of the practical benefits an ABM has, if any. In fact, while trip-based models are
almost ubiquitous among transportation agencies, many agencies have delayed or declined to
transition to an ABM citing additional data requirements, staff training, computational resources,
and related concerns (Miller, 2023).

In this research, we perform a more practical comparison of ABMs to trip-based models,

with a particular focus on the practical considerations an agency would need to make in

! The term “activity-based” model as used in practice usually refers to a “tour-based” model described in the
academic literature (Miller, 2023). Both model types use disaggregate approaches to model travel demand, but in a
tour-based model the focus is on re-creating travel journeys, while an activity-based model tries to model the need
for and participation in activities, with trips as an outcome of activity participation. In this report, we use the

practical language and refer to presently implemented disaggregate travel models as “activity-based” models.



transitioning to an ABM. We additionally discuss the potential practical advantages regarding
the quality and characteristics of travel analyses that an ABM allows. Though this research
occasionally makes quantitative comparisons between model types, we do not focus heavily on
model accuracy (either to each other or to observed data), as this can be adjusted in any model
type through model calibration. Instead, this research seeks to illustrate the differences between
trip- and activity-based models in a way that would be practically useful to an agency
considering transitioning to an ABM, noting potential pain points both discussed in the literature
and experienced in this research.

To compare the model types, we first identify three main goals of travel demand
modeling, which are to model travel behavior in response to changes in land use, transportation
infrastructure, and social/economic factors. We then create three hypothetical model scenarios,
one for each goal identified. These scenarios are the addition of a new development, an increase
in commuter rail service, and an increase in remote work, respectively. Each of these scenarios is
created in both a trip-based and activity-based model representing the Wasatch Front region of
Utah, USA. We discuss the process of implementing each scenario, as well as perform a variety
of post-hoc analyses, for both model types.

The document proceeds as follows: Chapter 2 provides an overview of the literature
discussing the differences between trip-based models and ABMs, including the theoretical and
analytical benefits of each framework. Chapter 3 first describes the models used in this research,
namely the existing regional trip-based model and an activity-based model constructed to support
research activities in the region. This section also describes the scenarios designed to test the
usefulness and applicability of the different model frameworks. Chapters 4-6 describe the

findings from each scenario, alongside a discussion of related limitations and implications.



Chapter 7 provides a summary of our findings and a discussion of our conclusions, along with a
set of recommendations. Chapter 8 (Appendix) presents a related analysis of professional
attitudes and perspectives on travel-model framework implementation from across the United

States.



2.0 LITERATURE REVIEW

Travel demand modeling in the modern sense has its origins in the 1950s, with the
Chicago Area Transportation Study (Chicago Area Transportation Study, 1959) being one of the
first urban planning studies to use the now-ubiquitous “four-step”” modeling framework
(McNally, 2007). Up to this point, most urban transportation planning used existing demand or
uniform-growth travel forecasts to model travel demand, but the Chicago Study used a
combination of trip generation, trip distribution, modal split, and network assignment models to
more accurately represent travel behavior (Weiner, 1997). Since then, there have been numerous
studies iterating on the “four-step” (more appropriately termed “trip-based”) framework, and
trip-based models are now the primary tool used in forecasting travel demand across the United
States (Park et al., 2020).

These trip-based models are not without problems, however. Rasouli and Timmermans
(2014) give several shortcomings of trip-based models. First, they use several sub-models that
are (implicitly or explicitly) assumed independent, and this can result in a lack of consistency or
integrity between sub-models. For example, the assumed value of time in the mode choice model
might be radically different than the assumed value of time in the tolling assignment model.
Second, these models are strongly aggregate in nature, which can cause significant aggregation
bias with high and low values excluded. Finally, they lack “behavioral realism”—that is, they do
not have a concept of individuals making decisions, which is what travel behavior actually is.

Jones (1979) proposed an alternative to the trip-based paradigm, namely an “activity-
based” framework that models travel behavior at an individual rather than aggregate level. An
ABM places the focus on “activities” rather than “trips” as the basic unit of analysis, and predicts

a sequence of activities for each individual and household, with information such as activity



location, start time, and duration, using a high level of temporal and spatial granularity. “Trips”
are then journeys from one activity to the next (Pinjari and Bhat, 2011). By adopting this
activity-centric framework, ABMs provide a more consistent and comprehensive representation
of travel behavior. They take into account complex dependencies and interactions within the
model as a whole and at an individual level. ABMs acknowledge that travel choices are not made
in isolation, but rather influenced by the preceding activities. This means that, for example, if an
individual takes transit to work, they will not be able to drive home. ABMs therefore attempt to
present a more conceptually accurate model of actual travel behavior than traditional trip-based
models.

Despite these advantages, many agencies have yet to adopt ABMs, and instead continue
to use trip-based models (Miller, 2023). While ABMs may be theoretically superior in certain
aspects, they may also have practical disadvantages, such as requiring more detailed input data
and greater computational resources. It is also not always clear if ABMs provide substantially
“better” forecasts than their trip-based counterparts, nor if the tradeoff between increased labor
for increased sensitivity make sense for every planning agency. This literature review presents an
overview of both modeling frameworks, and discusses the advantages and disadvantages of

using an ABM.

2.1 Overview of Model Types

Trip-based models are often referred to as “four-step” models due to their four
fundamental sub-models: trip generation, trip distribution, mode choice, and network assignment
(National Academies, 2012, p. 28). Models can be more complicated than these four steps,

possibly including integration with a land use forecast, iteration between mode and destination



choice, etc., but the “four steps” are the central component of any of these models (McNally,
2007).

In a typical trip-based model, travel demand is predicted based on aggregate population
data, often delineated by transportation analysis zone (TAZ). Each sub-model relies on this
aggregate data; for example, the modal split sub-model will often use average TAZ income as an
input (National Academies 2012 p. 14). Many trip-based models include a disaggregation step,
where this aggregate data is segmented along variables such as household size and vehicle
ownership. Regardless of the segmentation variables used in the first three model steps, the
resulting trip matrices by mode and time of day are then assigned to a transportation network.

ABMs differ significantly from this approach. Rather than using aggregate data, ABMs
use data representing an actual or synthetic population, with individual person and household
data (Vovsha et al., 2005). These models use an activity or tour scheduler to assign a daily
activity pattern (DAP) of zero or more tours to each individual, where a tour is a series of trips
that begin and end at home. These DAPSs are restricted temporally, spatially, and modally; i.e.,
each person has a logical and followable sequence of trips and activities (Bowman, 1998). For
example, if a person took transit to work, they cannot “drive alone” from work to lunch. ABMs
output a list of tours and trips by person, time, location, and type, and can assign these trips to a
transportation network in a similar manner as in a trip-based model. In effect, an ABM replaces

the first “three” steps of the traditional “four-step” approach.

2.2 Comparison of Modeling Frameworks

In discussing the differences between ABMs and trip-based models, there are really two
comparisons that need to be made: how the population data is structured, and how travel is

organized. Trip-based models generally use aggregate population data while ABMs use a



synthetic population of disaggregate person data, and trip-based models organize travel into trips
while ABMs organize travel into activities and tours. The following sections explain these
aspects of travel demand modeling and discuss the claimed advantages and disadvantages of

each model type.

2.2.1 Population Data

The aggregate population data used in trip-based models can vary in origin and level of
detail, but the basic concept is the same: The study area is organized into generally small zones,
and certain demographic and socioeconomic data is known or obtained for each zone (National
Academies, 2012, p. 14). This includes data such as number of households, average household
income, population, number of workers, etc. Rather than predict travel behavior using only this
zone-level aggregate data, many models include a “disaggregation” step, which classifies the
households in a zone along variables such as household size, vehicle ownership, and number of
workers. For example, a 1000-household zone with an average household size of 3 may be
classified into 500 2-person and 500 4-person households.? This disaggregation is useful, as
travel behavior (such as the number of trips made) can vary significantly based on a household’s
classification.

Subsequent model steps then use this disaggregated data in their estimations. For
example, the model may represent a 2-worker, 1-vehicle household making 3.8 work trips on an

average weekday, while it may represent a 1-worker, 1-vehicle household making fewer work

2 The specific method for classifying households may differ between models, so different models will have a

different distribution of households along each variable used for classification.



trips. The trips are then added to obtain the total number of trips produced by each zone
(National Academies, 2012, p. 37).

This approach is relatively straightforward: The required input data is usually easy to
obtain, the trip generation models are often simple, and it is computationally inexpensive
(National Academies, 2012). However, the initial segmentation of the aggregate population data
limits the types of analyses possible. An analysis based on parents’/adults’ highest received
education, for example, would require determining the number of households in each TAZ with
each possible combination of education level. This can theoretically be done, but more detailed
and varied analyses would require more levels of segmentation, greatly increasing the number of
classifications needed. Since the model needs to carry these segmentations through each model
step, modelers need to estimate trip rates, mode choice equations, etc. for every classification,
and while relevant real-world data may exist, sample sizes approach zero quickly, and so the
estimates have little statistical value (Moeckel et al., 2020; National Academies, 2012). Further,
combining these segmentations at any point precludes that segmentation from use in subsequent
model steps as well as in any post-hoc analysis.

This approach becomes a particular issue in equity analysis because it is perhaps
impossible to determine equitable distribution of “winners” and “losers” of a potential policy
without using demographic variables in the trip generation, destination, and mode choice steps
(Bills and Walker, 2017). Though many studies have shown that trip production and mode
choice behavior differ by ethnic group even after controlling for income (Bhat and Naumann,
2013; Yum, 2020; Zmud and Arce, 2001), including such variables in travel demand models can
be problematic. Does coding such a variable in a mode choice model represent discrimination?

Or does doing so assert that present differences resulting from unequal opportunity will persist



into future planning years? Regardless of the reasons for their exclusion, in a trip-based model an
analyst cannot use these variables in a post-hoc analysis of a transportation policy because the
trip matrices do not contain the adequate segmentation.

An alternative approach to population data, and the approach that ABMs use, is to use a
full synthetic population. A synthetic population takes demographic and socioeconomic data at
various levels of detail to create a “population” with generally the same attributes as the study
area (National Academies, 2012, p. 93). The goal is to have a population that is functionally
similar to the actual population, but without the privacy concerns of using real data. Castiglione
et al. (2006) argue that the major advantage with this approach is that the demographic and
socioeconomic data is known at the person and household level, rather than aggregated at the
zone level. An ABM ties decisions in each model step to a specific individual, and so the
individual-level socioeconomic data remains available throughout the modeling process
regardless of the specific variables used in each model step. This allows, for example, an equity
analysis to identify the “winners” and “losers” of a proposed development without needing to
encode demographic variables into each step of the model.

Bills and Walker (2017) used the 2000 Bay Area Travel Survey to create a synthetic
population and compare the effects that certain scenarios had on high-income and low-income
populations. With a 20% reduction in travel cost, they found that high-income workers benefited
more than low-income workers. They did similar comparisons for scenarios involving reduced
travel times for different mode choices and saw the effects each scenario had on the high- and
low-income workers. These types of analysis, which are difficult with aggregate population data,
can be very valuable in transportation planning and policy making, particularly when equity is a

priority.
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It is important to note that while many connect them only with ABMs, synthetic
populations can be used in running trip-based models as well. Trip-based models using a
synthetic population—often called trip-based microsimulation models or hybrid models—do
exist (Walker, 2005), but these are relatively rare in practice.

Figure 2.1 gives a visualization of an example “information pipeline” for a model using
aggregate data and a model using a synthetic population. In the aggregate data model, it is
impossible to know the trips made by, for example, 2-worker, 1-vehicle, low-income households
after the mode choice step; it only describes trips made by households with fewer vehicles than
workers. However, an activity-based model with a synthetic population models individuals, and
so an analyst can trace each trip to a specific person. All information is known at each point in

the model regardless of the data used in previous steps.

2.2.2 Travel Behavior

The other primary difference between trip-based models and ABMs—and the main
difference from trip-based microsimulation models—is that ABMs organize travel into “tours,” a
sequence of trips that begin and end at the home, rather than just trips. We should note that
Miller (2023) argues that many current “activity-based”” models ought to be labeled “tour-based”
due to this focus on building tours. In contrast, “activity scheduling” models explicitly model
activity participation, and trips emerge as the means to get from one activity to the next.
However, in practice there are few true “activity scheduling” models, and the term “activity-

based” is commonly used to refer to both activity scheduling and tour-based models.
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Figure 2.1 Flow of data in an aggregate model (a) and a disaggregate model (b).
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A typical trip-based model forecasts trips based on empirical trip rates, usually by trip
purpose and by household type (for example, low-income, 1-vehicle households make a certain
number of “home-based work™ trips) (McNally, 2007). The model then assigns an origin and
destination, mode, and often a time of day (peak/off-peak, etc.) to these trips, resulting in a list of
trips between each zone by mode and purpose. A trip-based microsimulation model may use
choice models rather than aggregate data for some of the model steps (Moeckel et al., 2020), but
the end result is similar: a list of trips by person, noting mode and purpose. However, this trip list
may be inconsistent, and the forecasted trips may not be physically possible to complete in any
sequence, as there is no sense of “trip-chaining.” The hope, though, is that over an entire
population the inconsistencies would cancel out, leaving an overall accurate forecast.

ABMs, on the other hand, explicitly model this trip-chaining in the form of “tours,”
sequences of trips that begin and end at the home. This approach attempts to create consistency
in trip origins/destinations, mode choice, and time of day: Since each trip is a part of a tour, the
trips within a tour are dependent on each other (Rasouli and Timmermans, 2014). The open-
source ABM ActivitySim (Association of Metropolitan Planning Organizations, 2023a), for
example, has a tour-scheduling model that determines the number of “mandatory” (work, school,
etc.) and “discretionary” tours each individual will make, and then chooses destinations and
modes for each tour. After making the tour-level decisions, the model does the trip-level
mode/destination choice for each trip in the tour, including the possible addition of subtours (see
Vovsha et al. (2005), Fig. 18.1.

Figures 2.2 and 2.3 show examples of the trips distributed across several TAZs in the
various model types. Figure 2.2 depicts the distribution in a typical trip-based model where the

model represents the total number of trips between zones. These results show that the mode and
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purpose of each trip is known, but because trip-based models can only model trips at the zone
level, there is no way of telling who made which trips other than the segmentation used through
each model step (see Figure 2.1 (2)). It is also not possible to construct a coherent daily list of
trips for individuals.

Figure 2.3, on the other hand, depicts visual representations of an individual’s travel
made possible using a synthetic population. Figure 2.3 (a) depicts the trip distribution that a trip-
based microsimulation model could give for an individual. Though each individual’s trips are
known, there is no guarantee of consistency between trips. For example, a trip-based
microsimulation model could predict that the individual takes transit to work but then drives
home, or that the individual makes two trips to recreation without ever making a return trip. The
activity-based approach, depicted in Figure 2.3 (b), attempts to add consistency by modeling
tours, and only generating trips consistent with each tour.

In addition to intra-person dependencies, Rasouli and Timmermans (2014) note that
ABMs can model dependencies between members of a household as well. A vehicle cannot be
used by multiple people in the same household at the same time to travel to different
destinations. Because the people within the household will have travel patterns that depend on
the patterns of others in the household, a policy affecting one person in the household can affect
everyone in the household no matter how directly the policy connects to them (Macfarlane and
Lant, 2023; Vovsha et al., 2005). A trip-based model cannot forecast these effects.

Another advantage of organizing travel into tours relates to accessibility analyses (e.g.,
How many people can a particular commercial building reach?). Dong et al. (2006) note that
when an analyst uses trip-based models to analyze accessibility, they must analyze each zone

based on proximity independently of travel behavior. They argue that this is a limited view of
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accessibility, and discuss the “activity-based accessibility measure,” which considers all trips in a
day rather than particular trips. As an example, if an individual does not live within a 20-minute
drive of a grocery store, traditional measures might rate this as poor accessibility. However, if a
grocery store lies on their path between work and home, then the accessibility should rate much
higher. Overall, they found that the “activity-based accessibility measure” predicts more

reasonable accessibility outcomes compared to traditional measures.

2.3 Lack of ABM Adoption

Though ABMs have many clear theoretical advantages over trip-based models, adoption
among agencies has been relatively slow. Many professionals implement ABMs in proprietary
software, which creates difficulty in maintaining and iterating on the model, Miller (2023)
argues. Even in an open-source model like ActivitySim (Association of Metropolitan Planning

Organizations, 2023a), Miller notes several ABM disadvantages:
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Computational inefficiency and complicated program design: ABMs take more time, more
computing power, and more money to run because the synthetic population needed for an ABM
uses much more data. Areas with thousands of TAZs and millions of people have historically
needed a supercomputer, and it has cost much more than what is spent to run trip-based models.
If a region can see similar results using a trip-based model, they may decide not to invest in an
ABM.

Absence of a standard model system: The modeling systems are often designed with different
approaches and for specific areas making it hard to transfer from one urban area to another. This
also makes it difficult for agencies to determine the best approach and decide which one to
implement. In relation to this, Miller also states that the pressures of publishing unique and
ground-breaking research in academia can deter researchers from converging toward best
theories and methods.

Lack of resources: Most ABMs were developed in academic settings which often lack
resources, and possibly desire, to put them into practice. This leaves it up to governments and
consultants to put the models into practice, but these organizations can be hesitant to promote

software development and invest in new systems.

For these reasons, as well as the inertia of current practices, many agencies and
organizations in the U.S. continue using trip-based models for demand forecasting and policy

analysis.

2.4 Research Gap

Although there has been much research on ABMs and their theoretical advantages,

practical comparisons of the model frameworks have been limited. It is often taken as a given
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that ABMs are unilaterally superior to traditional trip-based models due to their better theoretical
foundation, but it is not clear if that better foundation yields better results in terms of analytical
flexibility or policy outcomes. Ferdous et al. (2012) compared the trip- and activity-based model
frameworks of the Mid-Ohio Regional Planning Commission and found that the ABM was
slightly more accurate to observed data at the region level, but about the same at the project
level. Zhong et al. (2015) found significant differences in the predictions from an ABM
compared to a trip-based model in Tampa, Florida, but Mouw (2022) found that both model
types had similar prediction quality when compared with observed data.

These comparisons have somewhat contradictory findings, and certainly do not present
an overwhelming victory for ABMs. Each of these comparisons, however, focused on the
accuracy of the two frameworks, but do not address the methodological differences between
model types. What types of data collection/synthesis does each model type need? Can certain
analyses only be done through (or made easier by) one of the model types? What would an
agency need to transition from a trip-based model to an ABM? Are certain types of scenarios
suited to one model type? Though some of these questions have been discussed in the literature
(Lemp et al., 2007), a holistic methodological comparison is lacking. The answers in the current
literature are mainly theoretical, with little use to an agency considering the transition.
Additionally, much of the existing literature comparing the two model types is outdated, and the
technology of both model types may have significantly changed in recent years.

This research aims to answer these questions by providing a side-by-side comparison of a
potential trip-based and activity-based modeling methodology. The researchers ran several
“proposed development” scenarios in each model and compared the strengths and weaknesses of

each approach. We should note that this research does not focus on model accuracy, as in any
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model type this can be adjusted dramatically through calibration efforts. Rather, the focus is on
the methodological differences between the approaches, and the types of analyses each model

type can do.
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3.0 METHODOLOGY

This research seeks to compare methodological differences between trip- and activity-
based modeling frameworks. Both model types have a wide variety of implementations, as
individual agencies will adjust the basic model framework to match their specific needs. Rather
than comparing each of the various implementations of both model types, which is unreasonable,
we use a representative model for both types and note when results apply to general trip- or
activity-based models, and when results apply to the specific models used.

The representative trip-based model is the 2019 Wasatch Front (WF) travel demand
model, and is the current production model used by the Wasatch Front Regional Council
(WFRC) and the Mountainland Association of Governments (MAG). This model covers much of
the Salt Lake City-Provo-Ogden, Utah Combined Statistical Area. We also used an ActivitySim
implementation in the same study area as a representative ABM. The following sections discuss
both models in detail.

Note that the focus is not on comparing model accuracy or performance, but rather on
comparing the process of using each model, including the types of analyses that can be
performed. There are, therefore, few direct comparisons of model outputs between each type.
Instead, this research highlights the strengths and weaknesses of each model type in planning and

policy analysis, and illustrates these differences.

3.1 WF Model

WFRC and MAG implemented the WF model in the CUBE software by Bentley (Bentley
Systems 2023), and currently uses it for modeling travel in the Wasatch Front, Utah area. WFRC

provided the model directly, including land use forecasts and the current long-range
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transportation plan. The model is taken essentially as-is, with no changes other than those noted

in Chapters 4-6 to implement the scenarios studied in this research.

The WF model, like many trip-based models, requires the following inputs:

e Land use data, including information about population, employment, and socioeconomic
variables such as income, delineated by TAZ. WFRC provided this directly as an output of
their land-use forecasting model(s).

e Travel skims detailing travel time, cost, etc. between each origin-destination TAZ pair. The
WF model uses an iterative process of assigning volumes to the transportation network and
recalculating the skims, which the model uses in the destination and mode choice model
steps.

e Transportation networks, including highway, transit, etc. networks connecting the TAZs to
each other. These networks contain information such as link speed and capacity. Though the
WF model assigns travel volumes to the network, this paper does not analyze the model’s
network assignment results. However, we still used the network volumes to calculate the
loaded network skims.

e Lookup tables, used in many model steps for information such as trip rates by household
type. We took these directly from the WF model without modification.

e Model constants and coefficients, which some model steps such as mode choice require for
calibration. We also took these directly from the WF model.

Figure 3.1 gives an overview of the WF model, showing broad model steps in a
flowchart. Like many trip-based models, the WF model follows the “four-step” approach and has
the main steps of trip generation, trip distribution, mode choice, and network assignment. The

model also includes a household disaggregation step at the beginning to estimate the number of
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Figure 3.1 WF model flowchart. The distribution step includes a feedback loop where
preliminary loaded network skims are used to perform subsequent iterations of trip

distribution until the distribution converges.

households by size, income group, number of workers, and auto ownership using the TAZ-level
data and lookup tables. This does not create a fully synthetic or disaggregated population, but is
more segmented than the initial TAZ-level data.

The household disaggregation step takes TAZ-level socioeconomic data (such as

population, number of households, and average income) and estimates the number of households
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belonging to each category of household size, number of workers, income group, and vehicle
ownership. The model “caps” the household size, number of workers, and vehicle ownership
categories at 6, 3, and 3, respectively (e.g., every household with 3 or more workers is grouped
into a “3+ workers” category). Table 3.1 gives the WF model income groups.

Table 3.1 Income Groups in the WF Model

Income Group Income Range
1 < $45,000
2 $45,000-$75,000
3 $75,000-$125,000
4 > $125,000

The WF model estimates an additional distribution termed “life cycle.” This distribution
places households into one of three categories, intended to represent the presence of children
and/or working adults in the household. Table 3.2 shows the “life cycle” categories in the model
based on the estimated age distribution in each TAZ.

Table 3.2 Life Cycle Categories in the WF Model

Presence of persons aged:

Life Cycle  0-18 18-64 65+
1 — v —
2 v v —
3 v — v

The trip generation step uses the disaggregated household data to estimate the number of
trips produced from each TAZ by applying average rates differing by household type. The trip
rates vary by trip purpose and household classification. The trip generation step multiplies the
trip rates by the number of households in each category, giving the total number of trips by

purpose each TAZ produces.
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The WF model contains the following trip purposes:
o Home-Based Work

o Home-Based Shopping

. Home-Based School
° Home-Based Other
o Non—Home-Based Work

o Non—Home-Based Non-Work
The Home-Based Work and Non—Home-Based Work purposes use only the number of workers
per household to determine the trip productions, and all other trip purposes use the cross-
classification of household size and life cycle.

The trip generation step estimates the trip attractions for each purpose based mostly on
the number of jobs by industry in each TAZ. The model also uses the number of households in a
TAZ to estimate the home-based other and non—home-based trip attractions, and the school
enrollment by TAZ for the school attractions. Each purpose has a different coefficient for each
variable, and we left these coefficient values unchanged.

Trip distribution uses a gravity model of the form

T =P x—>J
Yo Eje Ajn Fig

where

T;; is the number of trips from zone i to j,

P; is the productions at i,
Aj is the attractions at j,

F;; is the cost term/function from i to j, and
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J is the set of all zones trips from i can be attracted to.
The WF model includes a “distribution feedback loop,” where the model performs a preliminary
highway assignment to obtain congested network skims iterates until the trip distribution
converges.

The mode choice step uses a choice model to assign a percentage of trips by purpose to
each mode, and the network assignment step assigns the vehicle trips through an iterative process
to equalize travel time between potential routes. The WF model outputs include trip tables by

purpose, mode, and time of day, as well as loaded highway networks.

3.2 ActivitySim

ActivitySim is an open-source ABM whose development is led by a consortium of
transportation planning agencies. ActivitySim is highly configurable, and many agencies have
their own bespoke implementation. This paper uses an ActivitySim implementation based on the
implementation Macfarlane and Lant (2021) used, which is in turn based on the prototype
configuration for the Metropolitan Transportation Commission serving the San Francisco area
(Erhardt et al., 2011). The exact implementation is available on GitHub (BYU Transportation
Lab, 2024).

ActivitySim, like all ABMs, simulates transportation decisions on an individual level.
ActivitySim has a hierarchical decision tree, where long-term decisions (such as auto ownership
and telecommute frequency) are made first, followed by daily and tour- and trip-level decisions
such as scheduling and mode choice (see Figure 3.2). Each of these steps determines information
to use in subsequent steps, and it can turn on and off many steps depending on the needs for the
model implementation.

We can categorize the steps broadly into five groups, as shown in Figure 3.2:
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Aggregate: mainly involves determining impedance measures between each pair of zones
(travel time, distance, cost, etc.). For this research, the WF model supplied these impedances
directly from the network skims output.

Household/personal steps relate to long-term decisions that are unlikely to change quickly
based on daily transportation conditions. These steps include determining remote work
status, work/school location, auto ownership, transit pass ownership, and free parking
availability at work. Our ActivitySim implementation models remote work status,
work/school location, auto ownership, and free parking availability, but we do not model
transit pass ownership and assume that everyone pays the transit fare.

Person daily decisions primarily concern an individual’s DAP. ActivitySim contains a step to
assign mandatory, non-mandatory, and home DAPSs based on personal and household
information (a home DAP involves no travel). For example, full-time workers are more
likely to have a mandatory DAP than part-time workers, all else being equal. Tour-level
choices operationalize the DAP. ActivitySim creates tours for each major activity in the day.
Additionally, ActivitySim determines if an individual makes an “at-work™ tour (e.g., leaving
for lunch and returning to the workplace). The model schedules and assigns a primary mode
to each tour, as well as a primary destination for non-mandatory and joint tours. ActivitySim
then populates the tours with trips and assigns each trip a purpose, destination, time of day,

and mode compatible with the tour-level assignment.
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Figure 3.2 Activity Sim model flowchart.
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The final steps of ActivitySim are writing output trip matrices and other tables, including
information on land use, persons, households, tours, and trips. Most of ActivitySim’s individual
models are based on a multinomial logit model of the form:

eVk

Pik) = Ykiek €'r
where

P (k) is the probability of choosing alternative k,

V. is the utility of alternative k, and

K is the set of all alternatives (as discussed in McFadden, 1974).

The coefficients on variables such as income, age, and work status, determine the utility values,
in addition to calibration constants for each alternative.

ActivitySim requires similar inputs to the WF model, though it does not include its own
network assignment process. Instead, ActivitySim uses network skims supplied from any other
process for information on travel time, cost, etc. A discussion and comparison of network
assignment processes is outside the scope of this project, and this ActivitySim implementation
uses the travel skims output from the WF model directly. In practice, ActivitySim mates to
CUBE or another network assignment algorithm for network skimming and travel time feedback.
To clarify, ActivitySim replaces the first “three” steps of a traditional four-step trip-based model.

ActivitySim requires population data at an individual level, including information such as
age, household income, and home location. Due to privacy concerns, analysts rarely use real data
for this purpose and use instead a synthetic population representative of the study area. Using a

synthetic population instead of real data also allows for modeling hypothetical scenarios,

including future-year forecasts.
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This research uses PopulationSim (Association of Metropolitan Planning Organizations,
2023b) to create a synthetic population for ActivitySim. The synthetic population aims represent
the study area while maintaining privacy. Additionally, analysts can adjust a synthetic population
in line with projected socioeconomic forecasts to perform future-year analyses. PopulationSim
takes a “seed” of individuals and households as input, and populates the area with copies of these
to match given controls such as the number of households by zone, the number of individuals by
age group, and so on.

The seed sample comes from the 2019 American Community Survey Public Use
Microdata Sample (U.S. Census Bureau, 2022), which contains a sample of actual (anonymized)
individuals and households at the Public Use Microdata Area geography (these geographies
partition the United States into areas of around 100,000 people each (U.S. Census Bureau,
2023)). The control totals come from two different sources: the U.S. Census and the WF model.
Table 3.3 shows these controls as well as their geographic level and source. The geography of a
control dictates PopulationSim’s “level of precision” in matching the control totals. For example,
with our configuration, PopulationSim will attempt to match the average number of workers per
household to the Census average for each Census tract, while the total population is only
controlled for across the entire region. PopulationSim also allows setting different weights to
each control, and Table 3.3 also provides this information. Because the Public Use Microdata
Sample does not contain every possible combination of variable values, it is not possible to
create a synthetic population that perfectly matches every control total. The weights allow certain
controls to “take priority” over others; for example, with this configuration, PopulationSim will
prioritize the average household size over the average number of workers per household if the

model cannot satisfy the two controls.
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Table 3.3 PopulationSim Control Totals by Geography and Source

Control Geography Source Weight
Population Entire Region  Census 5,000
Number of Households TAZ WF Model 1,000,000,000
Household Size Census Tract ~ Census 10,000
Persons by Age Group Census Tract Census 10,000
Households by Income Group Census Tract ~ Census 500
Workers per Household Census Tract ~ Census 1,000

Most of these controls come from Census data, with only the number of households per
TAZ coming from the WF model data. Note also that there are many personal and household
variables that are not accounted for in these controls, such as gender, vehicle ownership, internet
access, etc. We do not control for these variables, and they depend on the seed persons or
households we copy to control for the other variables. However, this process is assumed to still
give a representative enough estimate for the uncontrolled variables without needing to model
them explicitly.

The outputs of PopulationSim include a persons and households table comprising the

synthetic population.

3.3 Initial Model Comparison/Calibration

While this research generally does not directly compare the ActivitySim and WF model
outputs, it is important to ensure similar performance between the two models for meaningful
analyses. As such, we used a “baseline” scenario in both models to calibrate the ActivitySim
implementation to the WF model. This baseline scenario uses the 2019 WF model as is. For
ActivitySim, the baseline scenario uses 2019 Census and WF data to create the synthetic

population, and it uses land use data and network skims from the baseline WF scenario for
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accessibility and socioeconomic measures (where jobs and households are located) before

running through its series of models of individual trips and tours.

3.3.1 Validation of the Synthetic Population

We compared the PopulationSim output with the WF model outputs to validate the
synthetic population. The controls for PopulationSim mostly come from the Census, shown in
Table 3.3, and the WF model uses TAZ-level population and median income data and also has a
household disaggregation step that estimates the number of households by size and income
group. This section compares the PopulationSim output to the WF model output for each of the
previously mentioned variables: population, median income, and number of households by
income group.

Although the WF model provides data at the TAZ level, most PopulationSim controls are
at the Census tract level, and these tracts are not a one-to-one match with the region’s TAZs.
Because of this, PopulationSim places households in a TAZ with some degree of randomness. As
such, for small geographic areas such as TAZs the error distribution between the two models is
noisy. Therefore, we compare the PopulationSim and WF data by aggregating each TAZ at the
district level (as defined by WFRC and MAG). These districts include several contiguous TAZS.

Figure 3.3 shows the difference in district population between PopulationSim and the WF
data. It is worth noting that since we controlled the number of households to the WF TAZ level
data with an extremely high weight, the number of households per TAZ in the synthetic
population match to the WF data exactly. The average household size will therefore follow a

similar error distribution to the one shown in Figure 3.3.
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The population from PopulationSim per district is similar to the WF data in most places,
though there are some discrepancies especially near Herriman and Lehi, and in the far north of
Weber county. Since total population is a region-level control, but number of households is a
TAZ-level control, this shows PopulationSim is predicting a smaller average household size in
Herriman and Lehi than the WF data suggests.

Income is also an important factor in travel behavior (Zegras and Srinivasan, 2007), and
Figure 3.4 shows a district-level comparison of median income between the synthetic population
and the WF data. The synthetic population does have a lower median income compared to the
WEF data in many districts, but the error is, in most cases, fairly small, especially in more
populated areas. However, both ActivitySim and the WF model use household income groups
rather than individual household income to inform travel decisions. We used the income groups
from the WF model (see Table 3.1), and we adjusted the groups in PopulationSim and
ActivitySim to match. Figure 3.5 shows the difference in number of households by income group
between PopulationSim and the WF model. This figure shows PopulationSim predicting slightly
more high-income households and low-income households in many zones, and fewer middle-
income households, though the error is smaller in regions with higher population.

It should be stressed that these graphics are not comparing PopulationSim’s outputs to
ground-truth socioeconomic data, but rather to the outputs of a different model, namely the
household classification process in the WF model. Both models may have errors in different

directions, thus amplifying the perceived discrepancy in these results.
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Note that in the synthetic population, each household has a specific income and so can be
grouped directly, while the WF model requires a household disaggregation step to estimate the
number of households in each income group. Figure 3.5 therefore is comparing two models for
determining income groups, one a part of PopulationSim and the other in the WF model, rather
than comparing the synthetic population to actual socioeconomic data. Additionally, the overall
distribution of income is similar between the models, as Figure 3.6 shows. A production-ready
synthetic population would match its income distribution more closely to the existing
socioeconomic data, but as previously mentioned, this research focuses on the model process
rather than model accuracy. Because of this focus, ActivitySim does not need to be perfectly
calibrated to the WF model, and so for the purposes of this research the income distribution of

the synthetic population is acceptable.

3.3.2 Validation and Calibration of ActivitySim

This section compares the outputs of both models to verify that trip patterns roughly
agree. We make three comparisons between the two models’ outputs: mode split, trip-length
frequency distribution, and remote work.

The initial baseline ActivitySim scenario predicted a mode split significantly different
from the WF model, so we needed to calibrate the model. The ideal approach would be to
calibrate the mode choice model to recent travel survey data, such as from the Utah Household
Travel Survey. However, recent travel survey data was not available for this project, and this
research only needed a rough calibration. We therefore used the outputs of the baseline WF
model scenario as the mode split targets. A production model would certainly use travel survey

data and perform a thorough calibration, but that is outside the scope of this project.
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TAZ-level socioeconomic data.

Before beginning calibration, we matched the available modes in ActivitySim to those in
the WF model, creating a “crosswalk” between the modes in each model. The available modes
between ActivitySim and the WFRC model are not incredibly different, and in fact many modes
have a one-to-one match between the models. However, not all modes have an exact match
between models. Table 3.4 shows the modes in each model grouped to allow consistency during
calibration.

ActivitySim additionally has ridehail modes, but the WF model does not, and therefore
we do not have obvious calibration targets for ridehail. Based largely on the model results of Day
(2022), we asserted the following mode shares for ridehail:

o 0.015% for Home-Based Work trips

o 0.38% for Home-Based Other trips

o 0.4% for Non—Home-Based trips.
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Table 3.4 Crosswalk of Modes in WF Model and ActivitySim

Calibration Mode WF Mode(s) ActivitySim Mode(s)
Drive Alone DA DRIVEALONEFREE
Carpool (2) SR2 SHARED2FREE
Carpool (3+) SR3p SHARED3FREE

Walk walk WALK
Bike bike BIKE

dBRT, dCOR, dLCL,

Local Bus WBRT, WCOR, WLCL WALK_LOC, DRIVE_LOC

. WALK_HVY, WALK_COM,

Commuter Rail dCRT, wCRT DRIVE_HVY, DRIVE_COM
Express Bus dEXP, wEXP WALK_EXP, DRIVE_EXP
Light Rail dLRT, wLRT WALK LRF, DRIVE_LRF

Additionally, since the WF model has a significantly different mode split depending on
the trip purpose, we calibrated each trip purpose individually. However, a crosswalk of trip
purposes between the models is more complicated than the crosswalk for modes. Because ABMs
create tours first, which are then populated with trips, an ABM’s idea of “trip purpose” is entirely
different from that of a trip-based model. Specifically, an ABM does not have a concept of, for
example, “home-based work™ trips, there are simply trips on a “work” tour, some of which have
an origin or destination at home. For simplicity, though, we converted the trips from ActivitySim
into purposes that roughly match the WF model’s purposes. Any trip that doesn’t start or end at
home is considered a Non—Home-Based trip, and if a trip starting or ending at home has its other
end at work, it is considered a Home-Based Work trip. All other trips are considered Home-
Based Other trips.

We calibrated the model by iteratively adjusting the alternative-specific constants (ASCs)

in ActivitySim’s mode choice submodels. For each iteration, we compared the output mode split
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of ActivitySim to the target WF model mode split, and we adjusted ActivitySim’s ASCs with the
formula
Ay = In(Ty /M)

where A, is the adjustment value for mode k,

T}, is the target mode share of mode k, and

M, is the ActivitySim-predicted mode share of mode k.
We added this adjustment value to the current ASCs in ActivitySim iteratively until calibration
was satisfactory.

There are two aspects of this calibration process worth noting. First, ActivitySim contains
ASCs for both tour mode choice and trip mode choice, where the tour mode is the principal
mode used on the tour, and the trip mode is the mode of the individual trip (for example, there
could be a “walk” trip on a “transit” tour). Because tour-level mode choice influences trip mode
choice, we adjusted both the tour-level and trip-level ASCs with the calculated adjustment value
for each mode. Second, while it is possible to categorize ActivitySim trips into purposes similar
to a trip-based model, ActivitySim does not do this conversion internally. ActivitySim does have
separate ASCs by purpose, but these purposes are ActivitySim’s tour purposes, rather than
purposes resembling those in a trip-based model. Though it is not a perfect correspondence to
how we calculated the adjustment values, we adjusted the ASCs as follows: All ActivitySim “at
work” ASCs are calibrated with the Non—-Home-Based adjustment, all “work™ ASCs are
calibrated with the Home-Based Work adjustment, and all other ASCs are calibrated with the
Home-Based Other adjustment.

Figure 3.7 shows the mode split from ActivitySim compared against the target mode split

for each calibration iteration. After a few iterations, the mode split more closely matches
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Figure 3.7 Mode choice calibration, target (WF) vs. ActivitySim shares over several

iterations.

between the models; however, there are still some discrepancies. ActivitySim has mode choice
ASCs separated not only by mode and purpose, but also by many personal variables, such as
income, age, and vehicle ownership. We left the difference across these categories unchanged
and adjusted all ASCs for a given mode and purpose equally. Our ActivitySim configuration is
ultimately based on the San Francisco area, and so coefficients on variables such as travel time
and income are calibrated for that area. Additionally, we did not calibrate the vehicle ownership
model, and this may partly cause the discrepancies.

In any case, we chose the calibration at iteration 4 for the final ASC values, as subsequent
iterations adjusted the ASCs without changing the mode split very much. At subsequent
iterations ActivitySim was also less sensitive to changes in infrastructure due to over-calibration,
which would not allow for effective policy analysis. Table 3.5 compares the mode split of both
models after iteration 4 of calibration. Overall, the calibration resulted in a reasonably similar

mode split between the two models, though there are still discrepancies (for
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Table 3.5 Comparison of Mode Split Between Models After Calibration

Purpose Mode ActivitySim WF Model
Trips Share Trips Share
Drive Alone 1012180 60.6% 1328609 77.6%
Carpool 258459 15.5% 257783 15.1%
Bus 171875 10.3% 18870 1.1%
Home-Based Work Rail 80193 4.8% 20847 1.7%
Ridehail 1108 0.1% — —1
Non-Motorized 145957 8.7% 76505 4.5%
Drive Alone 702594 18.2% 1394415 30.0%
Carpool 2154115 55.8% 2702277 58.2%
Bus 149217 3.9% 17717 0.4%
Home-Based Other Rail 127969 3.3% 19591 0.4%
Ridehail 114278 3.0% — -
Non-Motorized 614901 15.9% 510144 11.0%
Drive Alone 716885 36.3% 951561 39.9%
Carpool 939668 47.6% 1273279 53.4%
Non_Home-Based Bu_s 99000 5.0% 4888 0.2%
Rail 21010 1.1% 8538 0.4%
Ridehail 40283 2.0% — —1
Non-Motorized 157006 8.0% 146404 6.1%

W\We asserted ridehail mode shares for mode choice calibration, but we did not include them
here

example, ActivitySim is predicting significantly more transit trips compared to the WF model).
While the calibration is not perfect, for the purposes of this research, this calibration is
determined to be reasonable enough.

Figure 3.8 compares the trip-length frequency distribution of the two models by mode
and purpose. Both ActivitySim and the WF model contain trip distribution steps which can be
adjusted to affect the distribution of trip length. However, as the figure shows, the two models
have similar trip-length frequency distributions, so no adjustment was necessary. The most

significant discrepancies are with transit trips, again likely due to this ActivitySim configuration
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being originally developed for San Francisco, making transit more attractive. Note that further
calibration may be required to create a production-ready ActivitySim implementation, but again
our focus is more on process than accuracy. We determined that ensuring the mode split and trip
length distribution model outputs between models are fairly similar is sufficient for this research.

The WF model has basic support for predicting remote work. This includes a lookup
table of remote work percentages based on job type, year, and county. ActivitySim also has this
functionality, and can additionally use individual- and household-level variables in its
predictions. It is worth noting that both the WF model and ActivitySim make a distinction
between “telecommuting” and “work from home,” where telecommute refers to an individual
that commutes to work some days but not all and “work from home” (called “home-based jobs”
in the WF model) means an individual’s workplace is always at their home.

The ActivitySim implementation discussed in Macfarlane and Lant (2021) does not
include any submodels related to remote work. However, a separate ActivitySim example
implementation, developed for the Southeast Michigan Council of Governments’ metropolitan
planning organization in Michigan, does include these submodels, and our ActivitySim
implementation takes these submodels directly from the Michigan example. We made minor
modifications to the remote work submodels to make the model compatible, but these
modifications mostly involved ensuring the variable names from the remote work submodels
were consistent with the existing ActivitySim implementation.

Both models treat “work from home”/“home-based jobs” similarly. The WF model’s land
use data contains employment by type in each TAZ, and it considers a “home-based job” as a

separate job type, so these are not counted toward employment totals in trip generation and
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subsequent steps. ActivitySim has a “work from home” submodel which assigns workers “work-

from-home” status based on personal variables such as income, gender, and education

Trip Purpose
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Table 3.6 Work-From-Home Submodel Choice Coefficients in ActivitySim

Description Coefficient
Constant for working from home 0.438
Full-time worker (1 if true) -0.812
Female worker -0.347
Female worker with a preschool child in household 0.573
Accessibility to workplaces of the home mgra -0.14
Presence of non-working adult in the household -0.372
Education level, Bachelors or higher degree 0.285
Household income less than 30K -0.393
Age Group - Less than 35 years -0.574
Age Group - 35 yrs to 45 yrs 0
Age Group - 45 yrs to 55 yrs 0.214
Age Group - 55 yrs to 65 yrs 0.452
Age Group - Older than 65 yrs 0.584

(we left these variable coefficients unchanged from the existing configuration, see Table 3.6).
There is also a “target work-from-home percent” value that adjusts the model to reach the
specified work-from-home proportion of all workers. Individuals with work-from-home status
are then prohibited from making a mandatory tour. This target work-from-home percentage is set
at 2.3%, based on a weighted average from the WF model data. We made no other adjustments
to the ActivitySim work-from-home submodel.

However, the two models differ in their approach to telecommuting. The WF model has a
lookup table of telecommuting shares based on job type, including predictions for future years.
ActivitySim has a “telecommute frequency” submodel which assigns workers a telecommute
status indicating the number of days they work remotely per week. Based on this status,
ActivitySim adjusts the likelihood of selecting a mandatory DAP. Telecommute status depends
on personal variables similar to those in the work-from-home submodel by default.

Notably, the telecommute frequency submodel also includes adjustments based on an
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Table 3.7 Telecommute Frequency Submodel Choice Coefficients in ActivitySim

Telecommute Frequency Coefficients

Description

1 day 2-3 days 4 days
Has children 0 to 5 years old 0 0 -0.864
Has children 6 to 12 years old 0 0.517 -0.81
One adult in household 0.177 0 -0.043
Part-time worker 0 0.425 1.112
College student 0 0.6 0
Pays to park 0.457 0 0
Income $60-100K 0.56 0.389 0
Income $100-150K 0.644 0.193 0
Income $150K+ 0.92 0.765 0
0 autos 0 0.407 0
3+ autos 0 -0.73 0
Distance to work 0.016 0 0

individual’s distance to work. We did not make any other changes to the existing variables in this
submodel, and Table 3.7 shows the submodel coefficients.

To calibrate ActivitySim’s telecommute frequency submodel to the WF data, shown in
Table 3.8, we added additional job type variables to ActivitySim. Because these are choice
coefficients rather than target percentages, we calibrated these values to match the WF targets.
The calibration allowed ActivitySim to match these targets exactly, as shown in Table 3.8.

Because both remote-work submodels in ActivitySim run before choosing an individual’s
DAP, ActivitySim can model a “rebound effect,” where individuals working remotely on any
given day may be more likely to make discretionary tours. However, because the WF model does
not include this effect, we left the ActivitySim DAP model unchanged. Table 3.9 shows the

coefficients of the DAP model for individuals who work remotely.
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Table 3.8 Telecommute Rates and Coefficients by Job Industry

Industry 2019 WFRC Telecommute Frequency Coefficients
Telecommute % 1 day 2-3 days 4 days
Retail 2.70% 0.312 0.125 0.078
Food 1.87% -0.368 -0.148 -0.092
Manufacturing 2.02% 0.038 0.015 0.01
Office 6.66% 1.782 0.712 0.445
Gov’t/Education 1.67% -0.56 -0.224 -0.14
Health 2.86% 0.158 0.063 0.039
Agriculture 6.93% 2.262 0.904 0.566
Mining 0.53% -2.03 -0.81 -0.511
Construction 3.28% 0.816 0.326 0.204
Other 5.37% 1.535 0.614 0.384

Table 3.9 Daily Activity Pattern Submodel Coefficients in ActivitySim

Mandatory  Non-Mandatory

Status DAP DAP Home DAP
Telecommutes 1 day per week 0 0.526 0.496
Telecommutes 2-3 days per week 0 1.387 1.584
Telecommutes 4 days per week 0 1.848 1.711
Full-time worker, works from home -999 0 0
Part-time worker, works from home -999 0 0

3.4 Example Scenarios

With these two calibrated models, we created three model scenarios to implement and
compare processes. This is not a comprehensive list covering all potential scenario possibilities,
but the scenarios identified intend to represent the main goals of travel demand modeling in
representing changes in travel behavior. Change in travel behavior could arise in response to
changes in land use, transportation infrastructure, and social/economic factors, so we created

three hypothetical model scenarios to implement one of these aspects.
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The first scenario involves a change in land use near the former state prison site in
Draper, Utah. Current plans for this site involve a new development known as “The Point,”
which will add high-density housing and commercial development to the area. This research
scenario will be based on this development, but will include only the land use changes. The
actual development plans also include expansion of transit, but this will not be a part of this
scenario.

The second scenario centers around a change in transportation infrastructure, namely an
augmentation of commuter rail service along the Wasatch Front. The FrontRunner, a commuter
rail line connecting Provo to Ogden, is slated for expansion. The expansion includes additional
stations and increased travel speeds due to vehicle electrification. This scenario models these
changes in accordance with the planned expansion of the service.

The third scenario addresses the growing trend of remote work. Given technological
advancements and the notable surge in remote work during the COVID-19 pandemic, this
scenario models a substantial increase in remote work based on projections from WF.

Each of these scenarios is based on the 2019 baseline scenario in the respective model,
and ignores any additional expected growth or development beyond the specific changes of each
scenario. For example, the “Remote Work™ scenario in Chapter 6 uses remote work projections
for 2050, but land use and socioeconomic data from 2019. These scenarios are therefore not
realistic, but they serve as illustrative examples of the types of planning and development
scenarios agencies may wish to analyze.

All three of these scenarios are coded in both the WFRC model and ActivitySim. The
results (Chapters 4-6) describe the process of implementing and analyzing each scenario, as well

as the analyses themselves.
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4.0 SCENARIO 1: CHANGE IN LAND USE

Changes in land use is one of the primary ways to affect travel behavior. Such changes
involve the addition or removal of households and/or jobs in an area, and our first model
scenario, termed the “Land Use” scenario, addresses this aspect of travel demand modeling by
simulating a new development in a single area. The basis for the Land Use scenario is the
redevelopment of a defunct prison site near Draper, Utah. This redevelopment is part of the
actual plan for the area, and the new development is known as The Point (Point of the Mountain
State Land Authority and Skidmore, Owings & Merrill, 2021).

This scenario models the change in transportation behavior that a development such as
The Point would create. Though the actual development plans for The Point include an
expansion of transit services (Point of the Mountain State Land Authority and Skidmore, Owings
& Merrill, 2021), this scenario only represents the additional households and jobs created from
this development. The data for the land use changes comes from the WF land use forecast, which
is based on projections from the Point of the Mountain State Land Authority (Point of the
Mountain State Land Authority and Skidmore, Owings & Merrill, 2021).

The site for this scenario consists of five TAZs. Table 4.1 shows the households,
population, and employment by type of these TAZs in the baseline scenario, and Table 4.2 shows
this information with the new land use. Notably, there were no households and relatively few
jobs in these TAZs in the baseline scenario. No changes other than to the land use/socioeconomic

data in these five TAZs were made relative to the baseline scenario.
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Table 4.1 TAZ-Level Socioeconomic Data for The Point (Baseline Scenario)

. Employment
TAZ Households Population Retail Industrial Other Total
2138 0 0 0 0 0 0
2140 0 0 0 0 0 0
2141 0 0 0 0 277 277
2149 0 0 0 0 796 796
2170 0 0 3 359 71 433

Table 4.2 TAZ-Level Socioeconomic Data for The Point (Land Use Scenario)

. Employment
TAZ Households Population Retail Industrial Other  Total
2138 7431 17811 4 0 76 80
2140 0 0 610 4 7390 8004
2141 0 0 1449 0 5363 6812
2149 0 0 962 2 7372 8336
2170 0 0 7 357 106 471

4.1 Scenario Creation

This scenario is simple to implement in the WF model. This model uses the land
use/socioeconomic data directly, so we only needed to replace the data for the specific TAZs
with the 2050 forecasted data. All other TAZs have the same land use data as in the 2019
baseline scenario.

ActivitySim requires two changes for this scenario. The first is to update to the TAZ-
level land use and socioeconomic data, which is identical to the process for the WF model. The
second is to update the synthetic population. To keep consistency between model scenarios, we
created a new population for only the five affected TAZs and joined it to the existing synthetic

population. The affected zones did not have individuals or households in the existing synthetic
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population, so we did not need to remove individuals or households before joining the two
populations.

Creating the new synthetic population followed a similar process as in the baseline
scenario in Section 3.2, but used the new land use data as the TAZ-level controls. Many of the
controls for PopulationSim use tract-level data from the Census, but existing Census data for The
Point site is unrepresentative of the new development, as currently the site lacks residential and
economic activity. Because of this, we used a Census tract covering part of downtown Salt Lake
City to represent the new development patterns at The Point. Therefore, the income distribution,
etc. of The Point site will match the downtown Salt Lake City income distribution, etc., though
the TAZ-level controls and land use/socioeconomic data in the area will match the WF
projections for 2050.

In a more realistic case, a transportation agency would forecast land use and
socioeconomic data to use as controls to PopulationSim, rather than using a separate Census tract
to represent new development. However, our ActivitySim implementation only needs to be
within a rough approximation of the WF model for the purposes of this project, and the method
used here results in reasonable accuracy between the models. Additionally, we designed our

ActivitySim implementation to be independent from the WF model where feasible.

4.2 Scenario Analysis

There are several kinds of analyses an agency likely would want to do in assessing the
effects of a land use change. Chief among them would be an analysis of the new trips resulting
from the development. These analyses could include the number of trips, the distance traveled,

and where the trips are made.
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Both model types allow for very easy analysis of trip numbers and lengths, as the WF
model outputs origin-destination trip tables directly by mode and purpose, and ActivitySim
outputs a list of trips containing information on origin, destination, and mode. Figure 4.1 and
Figure 4.2, for example, show the new trip-miles produced in the updated zones for the WF
model and ActivitySim, respectively. It is important to note that there is a crucial difference
between the model types: how the trips that do not begin or end at the home are treated.

In the WF model (and in many trip-based models), zones with households produce trips with
different trip purposes, including Home-Based Work, Home-Based Other, and Non—Home-
Based trips. “Home-based” trips have an origin or destination at the home, and are fairly
straightforward to model, as the destination choice step can take for granted that these trips have
one trip end in the zone that produced them. In addition to home-based trips, though, individuals
make many “non—home-based” trips, which do not have an origin or destination at the home
(e.g., traveling from work to a grocery store). Non—home-based trips can be a significant portion
of total travel, as Figure 4.2 shows, but are not as straightforward to model as home-based trips.

Because non—-home-based trips by definition have neither an origin or destination at the
home (where trips are produced in the trip generation step), these trips happen exclusively
between zones that did not produce them. Therefore, it is difficult to know how best to
redistribute non—-home-based trips in trip-based models, as they could in reality have any number
of origins and/or destinations. Though modeling the destinations for non—home-based trips could
be done via a similar process to that of home-based trips, the origins of these trips need to be
modeled as well. There are several methods to redistribute non—home-based trips in trip-based
models. One approach is to assign non—home-based trip origins in a similar manner to trip

destinations as part of the trip distribution step, either with a gravity model or some distance-
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decay function. The model can then represent the destinations of these non—home-based trips as
if they were any other trip. This results in non—home-based trips that are more likely to have both
an origin and destination relatively near to the home. The WF model takes a different approach:
Non-home-based trip ends have a production model and an attraction model. In the trip
generation step, households produce non-home-based trips similarly to any other trip purpose.
However, the trips produced in this step determine only the quantity of non—home-based trips,
not the trip ends. The distribution of non—home-based trips is determined by a trip attraction
model, largely based on TAZ employment. Then the model globally scales this distribution to
match the total quantity of non—home-based trips produced in the trip generation step.

By contrast, an ABM models individuals and their travel explicitly, and this makes the
treatment of non—home-based trips much more straightforward. Each trip is tied to a specific
individual with a defined home location, and so no extra “redistribution” step is needed to model
or analyze non—home-based trips: These are “built-in” to each individual’s tour pattern. In fact,
as Figure 4.3 shows, non—-home-based trips can occur as part of any tour type/purpose; there is
no separate “non—home-based” purpose in ActivitySim. Note that Figure 4.3 counts person-miles
by tour purpose, using the purposes as defined in ActivitySim, rather than converting the
ActivitySim trips to the “common” trip purposes as discussed in Section 3.3.2.

In addition to looking at total person-miles traveled, it is also useful to analyze the origins
and destinations of the new trips. One common way to visualize trip origins and destinations is
with desire lines, which show lines for each trip origin/destination pair. The thickness of the line
represents the number of trips between the pair of zones.

Figure 4.4 shows a desire line plot by mode of all home-based trips produced in the new

development zones in the WF model. This figure is in line with our expectation: non-motorized
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trips are quite short, transit trips are exclusively to downtown areas, and many drive-alone and
carpool trips are made with varying lengths. Figure 4.4 also shows a similar mode split to
Figure 4.2. Although the former depicts the number of trips and the latter depicts trip distance,
there is a rough correlation between trip count and miles traveled, so it is not surprising that the
mode split is similar between the figures. There is difficulty in analyzing the non—home-based
trips, however. Typically, in a trip-based model, once non—-home-based trips are assigned trip
ends, they have no connection to the homes/zones that produced them, and are treated as
“belonging” to either the origin or destination zone. Because of this, it is not possible to simply
filter trips by origin or destination as can be done with the home-based trips. Instead, we took the
difference between the entire non—home-based trip matrices in both this scenario and the
baseline scenario.

Figure 4.5 shows the desire line plot for the difference in non—-home-based trips between
this scenario and the baseline scenario. Two things are immediately noticeable from this plot.
The first observation is that many pairs of zones saw a decrease in non—home-based trips
between them compared to the baseline scenario (i.e., there were more non—home-based trips in
the baseline scenario between these zones). Certainly, it makes little sense to predict fewer trips
as the result of added population and employment. However, this is in fact not an overall
decrease in non-home-based trips; these trips are simply being assigned trip ends in different
locations due to the nearby change in land use. The second observation is that the largest
increases in non—home-based trips include an origin or destination in the new development (the
home zones of the new population). Because the change in employment was much more
significant than the change in population (see Tables 4.1 and 4.2), many more non-home-based

trip ends were attracted to the development zones compared to the relatively little global increase
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in non—home-based trips due to the increase in population. The model includes both effects (the
global increase in and the changed distribution of non-home-based trips), but the two effects are
impossible to separate.

As previously mentioned, an ABM allows tracking individuals explicitly, and so
analyzing non—home-based trips is much more straightforward. Figure 4.5 shows desire lines of
all trips made by individuals living in the new development zones for ActivitySim. Non-home-
based trips are colored differently from home-based trips.

In an ABM, non-home-based trips are directly connected to their place of production, as
each trip is linked to a specific individual who has a defined home location. The individual
nature of an ABM avoids entirely the problems trip-based models have with non—home-based
trips. In a complicated land use forecast, an analyst can analyze each development’s full

contribution to network congestion individually.
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5.0 SCENARIO 2: IMPROVED TRANSIT SERVICE

Our second scenario models travel behavior changes because of changes to transportation
infrastructure.® This model scenario, termed the “Transit” scenario, is based on a planned
improvement to the FrontRunner commuter rail line. FrontRunner runs along the Wasatch Front
between Provo and Ogden, Utah, with several stops in between. Currently, there is only one set
of tracks for much of the line, and it is only possible for trains to pass each other near stations.
Because of this, headways are quite large, with trains running every 30 minutes in peak periods
and every 60 minutes in off-peak periods.

A potential improvement to FrontRunner would “double track™ the entire route, allowing
trains to pass each other at any point. The main benefit of this improvement is a substantial
decrease in headways, bringing them to 15 and 30 minutes for peak and off-peak service,
respectively. Two additional improvements are partial electrification of FrontRunner, allowing
for faster travel speeds, and extending the track farther south with additional stops.

The Transit scenario models these improvements to FrontRunner. The scenario adjusts
the headways to 15/30 minutes for peak/off-peak service, increases travel speeds, and adds
additional stops in Vineyard*, Springville, Spanish Fork, and Payson. Figure 5.1 shows the
FrontRunner network along with the modeled changes. There would be additional transit

improvements, such as a revised bus service network serving the Springville station, but for the

3 Though this scenario models transit, the findings will apply to a change in level of service for any transport mode.
4 1n 2019, the model year for the baseline scenario, the Vineyard station was not yet open, though the station has

been operational since late 2022.
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Figure 5.1 Map of the FrontRunner commuter rail line.
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sake of simplicity, we did not include these additional improvements in this model scenario; we

only model the changes to the FrontRunner service.

5.1 Scenario Creation

In the WF model, this scenario is relatively easy to implement. The input data stores the
headways and we can easily modify them, and the model already includes a 2050 network with
increased speeds and additional stations for future-year analysis. The only additional change
needed was to turn on the “park-and-ride” flag in the highway network at the node of each new
station, which allows transfers between auto and transit modes at these nodes.

To implement this scenario in ActivitySim, we only needed updated travel skims. As in
the baseline scenario, ActivitySim directly uses the WF model’s network assignment transit
skims output in this model scenario. Because the mode share of transit is relatively low, we do
not expect the change to affect the highway travel times very much. Therefore, we took the WF
model baseline-scenario highway skims to use in ActivitySim, and we did not update them for

this scenario. No other changes to ActivitySim are necessary to model this scenario.

5.2 Scenario Analysis

One of the most straightforward analyses to perform is a comparison of the mode split
between this and the baseline scenario. Table 5.1 shows the number of trips by purpose and
mode for each model, and compares these results between this scenario and the baseline
scenario. Unsurprisingly, both models predict a significant increase in commuter rail trips. The

models differ, however, in which modes the new commuter rail trips come from.
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Table 5.1 Change in Mode Split with Improved Transit

Purpose Mode WF Model ActivitySim

Baseline Trips Transit' Trips ~ Change Baseline Trips Transit! Trips Change

Drive Alone 1,328,609 1,326,191 -0.2% 1,012,180 1,010,565 -0.2%

Home- Carpool . 257,783 256,654 -0.4% 258,459 256,550 -0.7%

Based Local Tran3|t. 37,935 36,494 -3.8% 232,222 233,426 0.5%
Work Commuter Rail 10,821 15,891 46.9% 19,846 22,265 12.2%
Ridehail — — — 1,108 1,099 -0.8%
Non-Motorized 76,506 76,396 -0.1% 145,957 145,845 -0.1%

Drive Alone 1,394,415 1,394,095 0.0% 700,133 698,809 -0.2%

Home- Carpool _ 2,702,277 2,701,039 0.0% 2,148,429 2,145,135 -0.2%
Based Local Tran3|t_ 33,168 32,583 -1.8% 195,062 194,649 -0.2%

Other Commuter Rail 4,180 6,332 51.5% 81,094 87,337 7.7%
Ridehail — — — 113,624 113,538 -0.1%
Non-Motorized 510,143 510,103 0.0% 613,134 611,996 -0.2%

Drive Alone 951,561 951,407 0.0% 716,143 714,854 -0.2%

NOM Carpool 1,273,279 1,272,977 0.0% 938,056 936,408 -0.2%

Home- Local Transit_ 12,213 12,068 -1.2% 107,526 108,395 0.8%

Based Commuter Rail 1,243 1,806 45.3% 12,317 13,344 8.3%
Ridehail — — — 40,092 40,061 -0.1%
Non-Motorized 14,6404 146,409 0.0% 156,819 156,587 -0.1%

l“Transit” refers to the Transit scenario, not the mode of travel
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For Home-Based Other and Non—-Home-Based trips, the WF model shows virtually no
change in the number of auto and non-motorized trips, while there is a more significant decrease
in the number of local transit trips. Home-Based Work trips do see a decrease in auto trips with
the improved transit, but there are still significantly fewer local transit trips compared to the
baseline scenario. This indicates that the new commuter rail trips are mostly coming from those
who would have taken local transit in the baseline scenario.

ActivitySim, on the other hand, shows an increase in local transit trips for Home-Based
Work and Non—-Home-Based trips. For Home-Based Other trips, there is a decrease in local
transit, but by percentage it is not nearly as significant as the decrease in the WFRC model.® This
shows that most new commuter rail trips in ActivitySim are coming from auto (drive-alone and
carpool) modes, rather than other transit modes.

The discrepancy may be partially explained by the difference in the way trips are
modeled. In the WF model, trips are modeled in aggregate, with no interaction between separate
trips. Regardless of trip purpose, trips are treated essentially the same, though potentially with
different coefficients in mode choice equations. ActivitySim, however, does model interactions
between trips. An individual who makes a commuter rail trip will (usually) not be able to drive
for subsequent trips until they have returned home. Because of this, individuals taking commuter
rail are more likely to then take other forms of transit on the same tour.

One particularly interesting analysis that can be done with an ABM is to see who

changed modes with the improved transit. Because trips are modeled individually rather than in

5> The absolute difference in number of Home-Based Other local transit trips between the scenarios is comparable
between the two models, but since ActivitySim is predicting significantly more transit trips in the baseline scenario

compared to the WFRC model, the percent change is much smaller in ActivitySim.
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aggregate, it is possible to identify trips that switch modes between the scenarios. Figure 5.2
shows the distribution of these “switched” trips. These are trips that are “the same” between
scenarios and differ only by mode. For the purposes of this analysis, trips are considered “the
same” between scenarios if they are made by the same person and have the same origin and
destination zones, time of day®, and tour and trip purpose. Most of these trips also share the same
mode, which is to be expected, but many do not. Figure 5.2 is filtered to show only trips that do
not share the same mode between scenarios.

There is some amount of randomness in the way ActivitySim determines trip modes,
though. This randomness is seen partly in trips that switch away from commuter rail despite the
improved commuter rail service, as well as some trips that switch to modes other than commuter
rail, especially to drive alone. Although, part of the switch from carpool to drive alone can be
explained as previously carpool trips where all but one vehicle occupant switched to another
mode, leaving one person in the vehicle for the trip. Overall, though, the randomness is not a
significant portion of the overall mode switching seen in Figure 5.2.

However, the improved transit service did not only affect the mode choice in
ActivitySim. In fact, there are many trips that do not have a match between scenarios, where
origin, destination, time of day and/or purpose differ. The number of trips an individual makes
may also differ between scenarios, as each person’s DAP is partially dependent on accessibility
measures (see Figure 3.2). Notably, Figure 5.2 also does not include any of these trips; the figure

only shows trips which do have a match between scenarios.

6 ActivitySim models time of day as the “departure hour” for each trip. If two trips share the same departure hour,

they are considered here to have happened at the same time.
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ABMs also allow for even more granular analysis than shown in Figure 5.2. For example,
Figure 5.3 shows the trip modes of at-work subtours made by individuals who switched their
work tour mode away from drive-alone. The figure shows the at-work subtour trip modes for all
these individuals, not just those who also switched their at-work subtour trip modes. These
results are as expected. All trips that were drive-alone in the baseline scenario switched to
carpool, and there was virtually no mode switching otherwise, except a few trips that switched
from carpool to non-motorized. This switching from carpool to non-motorized can again be
largely explained by the randomness in ActivitySim’s mode choice models, and again is

relatively insignificant.
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Figure 5.3 At-work subtour trip modes of individuals who switched their work mode

away from “Drive-Alone” in ActivitySim.
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Table 5.2 Example Socioeconomic Analysis of Transit Trips (WF Model)

TAZ-Level Median (weighted by trips)

Purpose Mode Trips Households Population Jobs Income
Home-Based Local Transit 36,494 478 1,211 400 $54,208
Work Commuter Rail 15,891 435 1,368 279 $76,529
Home-Based Local Transit 32,583 460 1,147 454 $49,682
Other Commuter Rail 6,332 423 1,306 317 $68,369
Non-Home- Local Transit 12,068 97 182 1362 $50,921
Based Commuter Rail 1,806 138 453 1487 $58,576

Both model types additionally allow for analyzing the types of people who use transit.
The WF model, however, is limited to analyses using aggregate, TAZ-level data. Table 5.2
shows, for example, the median number of households, people, and jobs per TAZ weighted by
the number of transit trip productions in each TAZ for the WF model. Additionally, Table 5.2
shows a median income associated with transit trips, but note that this is not a median income of
transit riders, but a median of TAZ median income, weighted by trip productions. It is difficult to
know the actual income distribution of transit riders since individuals are not modeled explicitly.

Because an ABM does model individuals explicitly, we can access information about
each individual at every stage of the model, including in post-hoc analysis. We can therefore
determine the individual-level distribution of age and income for transit riders, for example.
Table 5.3 shows a similar summary as Table 5.2, but for ActivitySim. Table 5.3 presents median
values for the individuals who made transit trips, not simply TAZ averages. Notably, Tables 5.2
and 5.3 show that ActivitySim is predicting a higher median income of transit riders than the WF
model. Our synthetic population does overpredict high-income households along the length of

FrontRunner (see Figure 3.5), and this may partially be the cause of the discrepancy.

67



Table 5.3 Example Socioeconomic Analysis of Transit Trips (ActivitySim)

Individual-Level Median

Purpose Mode Trips Income Age Distance to work (mi)
Home-Based Local Transit 233426 $78,735 37 7.4
Work Commuter Rail 22265 $85,314 33 24.3
Home-Based Local Transit 194649 $58,408 28 4.9
Other Commuter Rail 87337 $68,603 23 3.8
Non-Home- Local Transit 108395 $63,718 33 6.2
Based Commuter Rail 13344 $58,408 25 3.9

Additionally, Figure 5.4 shows the income distribution of transit riders for the WF model
and ActivitySim. Again, the WF model is not modeling individuals, so for the WF model
Figure 5.4 shows the distribution of median TAZ income weighted by number of trip
productions. For ActivitySim, however, the figure shows the true income distribution of
individual transit riders.

ActivitySim shows a rather wide income distribution of transit riders, while the
distribution of the WF model is much denser around $50,000-$75,000. This makes sense given
that the WF model shows a distribution of median incomes, while ActivitySim shows the
distribution of individual incomes. It is clear that ActivitySim considers transit to be more
attractive for a wider range of incomes than the overall income distribution, though notably low-
to medium-income individuals are somewhat more likely to take transit. However, the income

distribution of individuals taking transit in the WF model is unknown.
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Figure 5.4 Income distribution of transit riders in both models. We used the distribution
of production TAZ median income weighted by transit trips for the WF model, while we

used the actual income distribution of transit riders for ActivitySim.
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6.0 SCENARIO 3: INCREASE IN REMOTE WORK

Our final model scenario, termed the “Remote Work™ scenario, addresses changes in
travel behavior as a result of social and/or economic factors. Specifically, we represent an
increase in remote work rates since the COVID-19 pandemic. With the onset of the COVID-19
pandemic, there were unprecedented numbers of people working remotely (Bick et al., 2021).
Though remote work is currently not as common as during the pandemic, remote work rates are
increasing each year and are predicted to continue to rise (Ozimek, 2020).

As noted in Section 3.3.2, both models make a distinction between “working from home”
(no work location other than home) and “telecommuting” (working remotely some but not all
days). The WF model contains a lookup table of both work-from-home (called “home-based
jobs” in the WF model) and telecommute percentages by job type and year, and predicts an
increase in both remote work rates over time. Figure 6.1 shows the remote work rates predicted
in the WF model by year.

This scenario is a “what-if” analysis that models a significant increase in remote work
rates. We use the 2050 remote work rates from the WF model, but make no other changes from
the baseline scenario. In other words, this scenario models the 2050 predicted remote work rates
with the 2019 land use and infrastructure.

There has been much research, especially in recent years, on the implications of remote
work. While many agencies have adjusted their models to account for remote work, and most
models follow similar principles, it is not obvious what the best method is. Bramberga (2023)
even suggests that considerations for remote work should be made on a case-by-case basis
because there is no single best approach. The following section discusses some of these

considerations.
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6.1 Considerations for Modeling Remote Work

Increasing remote work rates may affect several aspects of travel behavior. The most
obvious effect is that people will on average make fewer work trips, and this effect will vary by
job type (YYasenov, 2020). Most travel demand models include a decrease in work trips based on
remote work rates and job type (Bramberga, 2023; Moeckel, 2017; Sener and Bhat, 2011).

While work trips decrease with an increase in remote work, Kim (2017) discusses a
“rebound effect,” where individuals make more discretionary trips on days they do not commute
to work. Moreno and Moeckel (2016) similarly discuss the idea of a “travel time budget,” where
a decrease in trips of one purpose will increase the time people allocate for trips of another
purpose and vice versa.

This rebound effect is not straightforward, however. Elldér (2020), for example, finds

that distinguishing between people that work from home all day and those who work from home
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only part of the day might make a difference. Compared to those who commute to work, those
who worked from home the entire day had fewer trips and miles traveled, but those who worked
from home only part of the day had more trips and miles traveled.

Additionally, the types of trips people make can differ depending on remote work status.
While the rebound effect proposes that the number of trips may increase on remote work days
(He and Hu, 2015), Mokhtarian and Varma (1998) find a decrease in vehicle miles traveled for
both work and discretionary trips on remote work days. This implies that longer trips are being
replaced by shorter trips on days people do not travel to work. Moeckel (2017) additionally finds
that those who travel to their job site less frequently are more likely to live further away from
their job site, and so their longer but infrequent commute is dropped on remote work days,
perhaps in favor of shorter, discretionary trips.

In our case, we are using the existing frameworks for modeling remote work in both

ActivitySim and the WF model, as discussed in Section 3.3.2.

6.2 Scenario Creation

We need to make two changes in the WF model for this scenario. The first is to replace
the 2019 estimates for work from home and telecommuting with the 2050 estimates. Table 6.1
shows both the original and updated estimates. The second change is to the TAZ-level
socioeconomic data. The WF model estimates a number of home-based jobs in each TAZ, so we
replaced the original 2019 home-based job estimates with the 2050 estimates. The WF model
additionally includes a global scaling factor for all remote work percentages. However, we left
this scaling factor unchanged, as we considered that the 2050 predicted remote work percentages
would better model a more realistic increase in remote work than simply scaling the 2019 rates

globally.

72



2019 2050

25%

20% 4

15% o

10%

g | o IlII |
--.._ . -

Share of all Jobs

0% A

Agriculture
Construction
Food
Gov't/Education
Health
Manufacturing
Mining
Office
Other
Retail
Agriculture
Construction
Food
Gov't/Education
Health
Manufacturing
Mining
Office
Other
Retail

Sector

Job Type . Home-based Jobs . Telecommute

Figure 6.2 Comparison of remote work rates in the WF model by year and industry.

We adjusted the remote work models in ActivitySim using the same process as in

Section 3.3.2, but with the 2050 targets from the WF model. We changed the “target work-from-
home percent” value in ActivitySim’s work-from-home submodel to 3.5% based on a weighted
average from the 2050 WF data, and we calibrated the job type coefficients in the telecommute
frequency submodel to match the WF target telecommute shares by job type. Figure 6.2 shows
the WF 2050 telecommute percentages with the ActivitySim telecommute utility coefficients. As
in the baseline scenario, this calibration allowed ActivitySim to match the WF telecommute
percentages exactly. ActivitySim on the other hand does account for this, in that individuals
working remotely on any given day may be more likely to make discretionary tours, as discussed
in Section 6.1 above. Table 6.3 shows this as well, where ActivitySim predicts a noticeable

increase in home-based other trips as well as a decrease in work trips.
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Table 6.1 Change in Mode Split After Increased Remote Work Rates

WF Model Trips

ActivitySim Trips

Purpose Mode Baseline Remote Work Change Baseline Remote Work Change
Scenario Scenario

Hoszsed Drive Alone 1,328,609 1244451  -63% 1,012,180 950,306 6.1%
Carpool 257,805 238,669 -7.4% 258,459 242,497 -6.2%
Transit 48,752 44977 -1.7% 253,176 237,881 -6.0%
Non-Motorized 76,506 71,063 -7.1% 145,957 137,684 -5.7%
Home- Drive Alone 1,394,415 1,395,196 0.1% 700,133 709,957 1.4%
Based Carpo_ol 2,702,272 2,702,625 0.0% 2,148,429 2,171,566 1.1%
Other Transit 37,346 37,359 0.0% 389,780 396,815 1.8%
Non-Motorized 510,143 508,869 -0.2% 613,134 617,480 0.7%
Non_ Drive Alone 95,1561 938,653 -1.4% 716,143 687,935 -3.9%
Home- Carpogl 1,273,317 1,254,548 -1.5% 938,056 922,662 -1.6%
Based Transit 13,453 13,199 -1.9% 159,935 158,366 -1.0%
Non-Motorized 146,404 144,126 -1.6% 156,819 152,688 -2.6%

74



Table 6.2 Telecommute Rates and Coefficients by Job Industry

2050 WF Telecommute Frequency Coefficients

Industry

Telecommute % 1 day 2-3 days 4 days

Retail 7.25% 2.021 0.809 0.505
Food 5.03% 1.376 0.551 0.344
Manufacturing 5.45% 1.636 0.655 0.408
Office 18.01% 4.792 1.916 1.197
Gov’t/Education 4.56% 1.199 0.48 0.301
Health 7.21% 1.929 0.771 0.482
Agriculture 16.83% 4.764 1.906 1.191
Mining 1.43% -0.694 -0.277 -0.174
Construction 8.82% 2.544 1.018 0.637
Other 14.58% 3.804 1.521 0.951

In addition to the number of trips, increasing remote work rates can also influence the
length of trips made. The WF model does not consider trip length when adjusting trip rates due
to remote work. There is perhaps an implicit consideration in that remote work rates differ by job
type and some job types are concentrated in certain areas, but there is no reference to trip length
explicitly. Table 6.4 illustrates this, where, for example, Home-Based Work drive-alone trips
decreased by 6.3% relative to the baseline scenario, but person-miles traveled decreased only by
5.3%. This shows that in fact the shorter work trips are being made less frequently with
increased remote work rates, though notably this is only a side-effect of the WF model design.

ActivitySim does model distance to work directly when predicting remote work status
(see Section 3.3.2 and Table 3.7), so those who live farther away from their job site are more
likely to work remotely. ActivitySim, therefore, predicts a greater decrease in person-miles than
in number of trips for Home-Based Work trips, as seen in Table 6.5. This discrepancy is not
especially large, showing that ActivitySim is not considering the trip distance too heavily (see

Table 3.9), but the discrepancy is consistent across all modes. Additionally, for Home-Based
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Other trips, ActivitySim predicts a greater increase in the number of trips than in person-miles,
which shows that ActivitySim is modeling the effects found by Moreno and Moeckel (2017) and

Moeckel (2017), where longer work trips are being exchanged for shorter discretionary trips.
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Table 6.3 Comparison of Trips Taken and Miles Traveled (WF Model)

Trips Person-Miles
P Mod . .
Hrpose ode Baseline Remote Work Change Baseline Remote Work Change
Scenario Scenario
Drive Alone 1,328,609 1,244,451 -6.3% 12,736,970 12,070,213 -5.2%
Home-Based Work Carpool 257,805 238,669 -71.4% 3,204,552 2,945,150 -8.1%
Transit 48,752 44,977 -1.7% 547,804 500,953 -8.6%
Non-Motorized 76,506 71,063 -7.1% 132,216 122,930 -7.0%
Drive Alone 1,394,415 1,395,196 0.1% 6,088,804 6,122,517 0.6%
Home-Based Other Carpool 2,702,272 2,702,625 0.0% 13,420,596 13,448,784 0.2%
Transit 37,346 37,359 0.0% 264,203 264,432 0.1%
Non-Motorized 510,143 508,869 -0.2% 591,297 590,349 -0.2%
Drive Alone 951,561 938,653 -1.4% 4,777,297 4,736,979 -0.8%
Non_Home-Based Carpool 1,273,317 1,254,548 -1.5% 7,650,625 7,538,596 -1.5%
Transit 13,453 13,199 -1.9% 73,563 72,018 -2.1%
Non-Motorized 146,404 144,126 -1.6% 136,914 134,784 -1.6%




8.

Table 6.4 Comparison of Trips Taken and Miles Traveled (ActivitySim)

Trips Person-Miles
Purpose Mode Baseline Remote Work Change Baseline Remote Work Change
Scenario Scenario

Drive Alone 1,012,180 950,306 -6.1% 9,632,251 9,021,681 -6.3%

Home-Based Work Carpogl 258,459 242,497 -6.2% 2,631,886 2,463,552 -6.4%
Transit 253,176 237,881 -6.0% 2,911,616 2,728,897 -6.3%

Non-Motorized 145,957 137,684 -5.7% 353,246 332,978 -5.7%

Drive Alone 700,133 709,957 1.4% 4,280,006 4,332,319 1.2%

Home-Based Other Carpopl 2,148,429 2,171,566 1.1% 11,498,994 1,1624,928 1.1%
Transit 389,780 396,815 1.8% 3,547,052 3,583,630 1.0%

Non-Motorized 613,134 617,480 0.7% 1,090,176 1,098,043 0.7%

Drive Alone 716,143 687,935 -3.9% 3,984,191 3,804,674 -4.5%

Non_Home-Based Carpogl 938,056 922,662 -1.6% 3,962,840 3,898,220 -1.6%
Transit 159,935 158,366 -1.0% 867,867 852,243 -1.8%

Non-Motorized 156,819 152,688 -2.6% 194,493 189,483 -2.6%




7.0 CONCLUSIONS AND RECOMMENDATIONS

As discussed in Chapter 2, there is a large base of literature discussing activity- and trip-
based models and their differences, but much of that literature focuses primarily on the
theoretical aspects of the respective models. There is little research into the practicality of either
model type that would be useful to an agency in deciding which type to use. Therefore, while
some of the conclusions presented here address quantitative differences between the two models,
the more relevant discussion in this chapter relates to the subjective experience of configuring
and using each model.

Specifically, this section focuses on potential “pain points” an agency may encounter
when transitioning from a trip-based model to an ABM, both as discussed in the literature and
from our experience in this research. Miller (2023) notes several reasons agencies may not be
adopting ABMs, as discussed in Section 2.3. These findings are largely echoed in the users’
survey presented in Chapter 8. Some of these reasons include heavy computational requirements,
complicated design, and lack of interoperability between areas. Additionally, switching to an
ABM would require an agency to expend resources on staff training, though notably this is true
for switching to any new modeling system, regardless of model type. The following sections
address each of these difficulties in detail and discuss our experience as it relates to them. Note
that many of the conclusions presented here are specific to the WF model and our ActivitySim
implementation, though many conclusions can apply to trip- and/or activity-based models more

broadly.
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7.1 Computational Resources

The first potential difficulty for an agency transitioning to an ABM is the computational
resources required to run the model. This section discusses the hardware used to run both models
in our research, as well as the model runtimes.

We performed all runs of the WF model on a Windows 10 computer with 2 Intel Xeon
Silver 4114 CPUs. The CPUs have a base frequency of 2.2 GHz, and 10 cores/20 threads each.
The WF model is configured for multiprocessing in its destination and mode choice steps, and
we configured it to use 16 threads for our scenario runs. This machine also has 128 GB of RAM
installed. Notably, this is a specialized computer, but would not be prohibitively expensive to
most agencies.

There were not significant differences in runtimes between each model scenario, and
each scenario had a runtime of 16—17 hours. However, this runtime includes the distribution
feedback loop (including both trip distribution and a preliminary network assignment each
iteration) and the network assignment step of the WF model. While ActivitySim does have a
destination choice model analogous to the WF model’s trip distribution step, ActivitySim has no
distribution feedback loop, as there is no preliminary network assignment. ActivitySim also does
not include a final assignment step. A better runtime to report for the WF model ignores the time
spent in the distribution feedback loop (except for one iteration of trip distribution) and the
network assignment step. The entire distribution feedback loop took around 4 hours to complete,
and the trip distribution step took 1-2 minutes each iteration. Additionally, the final network
assignment step took around 2 hours, and so the WF model runtime to compare with ActivitySim

is 10-11 hours.
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We did most runs of ActivitySim on compute nodes hosted by Brigham Young
University. Each node runs Red Hat Enterprise Linux 7.9, and uses an AMD EPYC 7763 CPU at
2.45 GHz. Each ActivitySim run requested 12 CPU cores and 360 GB of RAM. A dedicated
workstation with similar resources would again be a specialized computer, but not prohibitively
expensive. Running in single-threaded mode (i.e., only one CPU core was utilized), each run
took roughly 5 hours to complete, and used nearly all of the 360 GB of RAM available. With
multi-threading enabled, however, the runtimes decreased to around an hour per scenario, using
72% of the available CPU time across all 12 cores and 88% of the available RAM. This is a huge
difference in runtime between the two models, though crucially ActivitySim had 3 times as much
RAM available for use.

ActivitySim can significantly reduce the RAM required, at the expense of increased
runtimes, through “chunking” options (Association of Metropolitan Planning Organizations,
2023c), where large tables are loaded into RAM in chunks rather than all at once. For
comparison, we ran the baseline scenario in ActivitySim on the same computer used for the WF
model scenarios, with chunking enabled to account for the reduced RAM available (128 instead
of 360 GB). With multi-threading set to use 16 threads, and the chunk size set to 112 GB, the
baseline ActivitySim scenario ran in about 13 hours.

ActivitySim completed its scenario runs in a similar time to the WF model on the same
hardware. This is counter to the idea that ABMs always require significantly increased resource
and runtimes compared to trip-based models. Notably, our experience is certainly not universal,
and the runtime of any model will greatly depend on several factors, including the specific

modeling software and the hardware configuration. But at least in our case, ActivitySim

81



performed similarly to the WFRC model with the same hardware, and was an order of magnitude
faster when provided with enough RAM to avoid chunking.

Based on these results, an agency with a complex trip-based model looking to switch to
an ABM would likely not need additional computational resources beyond those used for trip-
based models. However, considering the potential gains in runtime (in the case of ActivitySim,
given enough RAM to avoid chunking), it may be worth considering buying or renting additional
computational resources, from Amazon Web Services or other cloud computing providers.
Computer hardware prices certainly change over time, but as of early 2024, a 12-core, 360 GB

RAM computer (using very rough price estimates) would likely cost a few thousand dollars.

7.2 Complication of Model Design

The second potential difficulty is the complication of an ABM’s design. ABMs may in
theory be more complicated than trip-based models, as ABMs model individuals rather than
simply using aggregate values. ABMs therefore have more “moving parts” than trip-based
models. However, these “parts” are often much more straightforward to interpret in an ABM, as
each model step simply assigns a household or individual a specific value, such as vehicle
ownership or the individual’s DAP. The model can then use these assigned values in subsequent
model steps. In our ActivitySim implementation, for example, an individual’s distance to work
has a direct effect on their remote work status, which in turn affects the DAP assigned to that
individual. It is easy to then model a remote work “rebound effect” by increasing the utility of a

non-mandatory DAP for individuals who work remotely.

1 See Section 6.1
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Since trip-based models exclusively deal with aggregate data, the interpretation of each
model step is vaguer. For example, while it may be possible in a trip-based model to model
distance to work as it relates to remote work, it is not clear how best to do this, and may require a
separate trip purpose and/or trip distribution model specifically for remote work. If the model
uses a separate “remote work” trip purpose, then the trip generation step must generate a number
of remote work “trips,” which is somewhat paradoxical. In ActivitySim, on the other hand,
distance to work is simply another model step that “slots in” to the model pipeline. An analyst
can adjust and calibrate this step (and most model steps) independently of the rest of the model,
and it is much easier to understand and interpret what each model step is doing.

Another example that highlights the difference in interpretation between models regards
non—home-based trips. Trip-based models construct non—home-based trips in a somewhat
arbitrary manner, especially if (like the WF model) the model does not include a non-home-
based trip redistribution step. While the idea of a trip that does not begin or end at home is
conceptually simple, it is difficult to model concretely in a trip-based model. Homes may
“produce” non—-home-based trips, but it is not clear where the origins or destinations of those
trips should be. By contrast, the interpretation of non—home-based trips in an ABM is trivial.
Because an ABM organizes trips into tours, it is easy to “follow” an individual throughout the
day; each trip has an origin and destination consistent with the other trips in the tour. “Non—
home-based” trips are not really a concept in ABMs, as individuals simply make trips, some of

which begin or end at home.

7.3 Model Interoperability

A third potential difficulty is the interoperability/transferability of an ABM from one area

to another. Collaboration between agencies could be difficult if each ABM implementation is
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bespoke and tailored to a specific area. We found, however, that at least with ActivitySim this is
not the case. In fact, ActivitySim is relatively easy to customize and extend. Our ActivitySim
implementation originally did not include remote work submodels, but it was simple to copy the
remote work models from the Michigan example configuration into our implementation. We
made some minor changes to ensure consistent variable names, but this process was not very
involved (see Table 7.1). Additionally, the example remote work models did not include
provisions for different remote work rates based on job industry as in the WF model, but it was
simple to add these.!

The WF model does already include different remote work rates by job industry, but it
would be difficult to add different rates based on, for example, vehicle ownership or TAZ
average income. It is worth noting though that this difficulty may be a result of the specific way

that the WF model is written, and may not apply equally to all trip-based models.

7.4 Training requirements

To change from a trip-based to an ABM, an agency will need to spend time to understand
the model and train its staff. We analyzed the time spent on each part of the modeling process for
this project, and this section provides discussion on this. Obviously, the actual time an agency
would require to transition to and use an ABM depends on many factors such as specific staff
experience, but this section is intended to give a very rough approximation of the time and effort

needed.

! The synthetic population we created has information on job industry for each worker, and so this was referenced in

the remote work submodel in ActivitySim.
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Table 7.1 shows the amount of time spent on creating and analyzing each scenario in both
models. These are approximations, as detailed time logs are not available. Additionally, many of
the tasks are interrelated or use the same code between models and scenarios, so it is sometimes
hard to separate the time spent into individual tasks. However, Table 7.1 should serve to give a
very rough idea of the time spent on each task. Note as well that this table shows time spent by
one graduate and one undergraduate research assistant; more experienced modelers would likely

require significantly less time to create and analyze similar scenarios.

Table 7.1 Estimated Time Spent on Modeling Tasks

Hours Spent on Task

Scenario Task WF Model ActivitySim
Synthetic population creation (baseline) — 50
— Add remote work models to ActivitySim — 20
Convert data to "common" structure? 60 50
Scenario creation 15 20
Land Use Trip-miles plot 5 5
Desire lines 15 10
Scenario creation 10 2
.. Mode split? 5 5
Transit Mode switching — 25
SE summary for transit riders 10 12
Scenario creation 20 5
WFH  Mode split? 5 5
Trips and miles traveled? 5 5

This task was iterative and the “common” structure changed over time to reflect new analyses
as they came up

’These analyses use the “common” structure directly and so took identical time and effort
between the two models
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The overall time spent for ActivitySim is on par with that for the WF model, though there
are a few important notes about this comparison: First, the scenarios in ActivitySim were
somewhat dependent on the outputs of the WF model. ActivitySim depends on the WF model’s
travel skims, as ActivitySim does not perform network assignment and so is unable to determine
congested travel times on its own. In the Transit scenario, for example, the only change needed
for ActivitySim was to use updated transit skims, which was extremely quick to implement.
However, these updated skims came from the results of the WF model’s Transit scenario, and so
in some sense the time spent for ActivitySim should possibly include the time spent for the WF
model.

Second, the tasks were divided between two research assistants largely in line with the
model type. This means that Table 7.1 is showing the time spent with each model type by a
specific individual. In other words, the difference between these tables is not only the model
type, but also the individual working on the task. Any comparisons between these tables should
therefore take this into consideration.

One additional point to note is how we performed the analyses in each model. The
outputs of the WF model relevant to our analyses consist mainly of matrices listing the number
of trips between zones. There is a separate matrix for each mode and purpose, and so analyzing
the data from the WF model requires making comparisons between several matrices for each
scenario, and potentially aggregating values across different matrices. The only output of
ActivitySim relevant to our analyses is a table listing every trip made in the scenario, which
includes information on person ID, mode, time of day, purpose, etc. There is therefore only one
table per scenario that we used in our analyses, as this table contained all the necessary

information for each analysis. For example, to create the non—home-based desire line plot for the
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WF model Figure 4.5, we took the non—home-based trip matrices and took the difference
between the Land Use and baseline scenario for each mode. For the desire line plot in
ActivitySim Figure 4.6, we took the table of trips and filtered the list to only persons whose
home zone was in the new development. We then had a list of trips made by residents of the new
development, aggregated these trips, and created the desire line plot. Both figures took roughly
the same amount of effort to create, and the analysis in ActivitySim gives more detailed

information than the equivalent analysis in the WF model.

7.5 Recommendations

Our experience in this research runs counter to many of the cited “pain points” of ABM
adoption. Our ActivitySim implementation was no more computationally intensive than the WF
model, we found the interoperability between the example San Francisco and Michigan
ActivitySim implementations relatively easy, and the amount of time and effort required to
understand and configure ActivitySim was on the whole rather small. Additionally, while
ActivitySim may be more complex “under the hood” than the WF model, the interpretation of
ActivitySim is in many ways significantly simpler. It is possible that these “pain points” are
outdated, as there have not been many comparisons between model types in recent years (as
discussed in Section 2.4).

The central finding of this statement is that commonly cited pain points in the activity-
based model implementation and use may be decreasing with improvements in technology.

There are, however, certainly still valid reasons for an agency to continue to use a trip-
based model over an ABM. Though, in our experience, the effort required to configure
ActivitySim was not unreasonable, the effort was non-trivial. An agency would need to spend

time and effort to re-train its staff and modify its existing workflow pipeline. Additionally, an
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agency switching to an ABM may lose conformity with previous analyses. Comparing model
results from before and after the transition could therefore be difficult, though this would depend
on the specific comparisons desired. In this research, we were, for example, able to make several
direct comparisons between ActivitySim and the WF model (see Chapters 4-6).

It is important for agencies to realize — as stated previously — that ActivitySim and other
activity-based models are only demand models, and rely on network skims obtained from other
software. Many agencies that currently use ActivitySim in fact use CUBE or other similar
software to perform assignment, though there are also several open-source network assignment
programs such as MATSim (Horni et al., 2016) and AequilibraE (Camargo et al., 2024) that are
also in use. Regardless of the software used for network assignment, an agency will need to
determine how best to integrate assignment into their modeling workflow to use ActivitySim.
The extensibility of ActivitySim includes the ability to add custom pipeline steps, so it would be
possible to add a feedback loop between network skims/accessibility calculations and network
assignment. It would also be possible to set up CUBE or other software to run ActivitySim.

An additional point worth noting is that the scenarios chosen and the analyses
demonstrated in Chapters 4-6 are only examples. The number of scenarios and analyses that we
could theoretically create is limitless, and we chose scenarios and analyses that we thought
would illustrate well the differences between model types. A common trend in our findings is
that for roughly the same amount of effort, we were able to perform more in-depth analyses with
ActivitySim compared to the WF model. This further shows that ABMs are not necessarily more
difficult to work with than trip-based models.

The goal of this research is not to determine which model type an agency should use, nor

is the goal even to specify exact criteria under which an ABM should be used over a trip-based

88



model. Rather, the research presents our experience with both model types as an illustration for
agencies to reference in determining which model type to use. We therefore encourage each
agency to review our findings in the context of their individual circumstances, and then

determine which model type will best fulfill their specific modeling needs.
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8.0 PRACTITIONER INTERVIEW FINDINGS

8.1 Research Overview

As the first phase of the 2022 UTRAC problem statement on activity-based modeling,
Fehr & Peers identified and held informational interviews with staff at agencies that have
transitioned from a trip-based to an activity-based model framework and interviewed them to
identify motivations for the transition as well as pain points faced during and after the transition
process. The team also interviewed consultants who have developed and applied activity-based
models in transitioning regions to understand their experience and commonalities seen across
different agencies that have adopted activity-based modeling frameworks.

Practitioners with varying backgrounds were identified to interview about their
experiences in adopting an activity-based model. The final interview list consisted of:

. 1 software vendor

. 2 model development consultants

. 7 MPO/regional agencies

. 2 statewide DOTSs

. 1 research center / regional model owner

The individuals interviewed are presented in Table A.1.

8.2 Interview Findings

8.2.1 Interview Outline

Practitioners were interviewed using a semi-structured interview approach, with a set of

prepared prompts/questions used as a jumping-off point to understand each
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Table 8.1 Interviewees

Individual Organization Organization Type
Peter Vovsha Bentley Software Vendor
Bruce Griesenbeck Fehr & Peers Consultant
Mark Moran MWCOG MPO / regional agency
Wu Sun SANDAG MPO / regional agency
Hsi-Hwa Hu SCAG MPO / regional agency
Rosella Picado WSP Consultant
Joel Freedman RSG Consultant
Kristen Villanueva Alameda CTC MPO / regional agency
Stefan Coe PSRC MPO / regional agency

Jonathan Ehrlich
Rebekah Straub
Alex Bettinardi

Leta Huntsinger

Met Council (MN)
Ohio DOT
Oregon DOT

NC ITRE

MPO / regional agency
DOT
DOT

Research Center / Model Owner

interviewee’s experiences and perspectives and practices around modeling within their

organization. The outline of questions was as follows:

. When and why did your agency decide to transition from a trip-based to an

activity-based model?

. What did development and adoption of the new model look like?
. What benefits have you seen?
. What downsides have you seen?
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. Knowing what you do now, would you have made the same decision sooner/same
time/later/never? (And other advice)
Different interviews spent greater or lesser amounts of time on each of these questions, and
questions were modified in the case of non-agency practitioners to focus on the range of

conditions they had observed across various client/partner agencies.

8.2.2 When and Why

Practitioners represented development timelines ranging from the early 2000s to 2020,
with the first adopter in 2005 and the latest expected to be completed in 2023 or 2024. Those that
adopted early typically did so as a result of ambitious staff or agency leadership who desired to
be at the forefront of modeling practice. Those later in the adoption process were more likely to
report being motivated by a perceived need to be consistent with the state of the practice of other
major MPOs, coupled with challenges around answering questions from policymakers that
traditional four-step models were poorly equipped to answer. At times, these decisions were
spurred by specific legislative or agency mandates, such as climate change legislation passed by
the Oregon legislature in 2010.

Specific policy questions that motivated this transition included the desire to better
understand and predict the impacts of changing demographics, pricing and tolling, equity
impacts of various policies and investments, and telecommuting/work-from-home behaviors. For
example, the former modeling director of SACOG described having previously struggled with a
four-step model that did not provide good answers to questions from leadership and elected
officials regarding how an aging population would impact transportation needs.

Policy questions around connected and autonomous vehicles, improved understanding of

time-of-day segmentation and peak spreading phenomena, and readiness to inform dynamic
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traffic assignment models were also mentioned as considerations in adopting activity-based

models, but were not mentioned by practitioners as primary motivating factors.

8.2.3 Development Processes

Development timelines were typically 3-4 years for core model development and basic
validation and calibration. However, practitioners reported needing additional time for internal
modeling teams to build out needed infrastructure, skills, and familiarity with new models. In
some cases, the overall timeline from initiating new model development to successful application
to major planning efforts stretched up to 8 years. At one extreme, SACOG was able to conduct
its model development process in approximately 2 years and successfully applied it to a regional
transportation plan adopted just 2 years later. At the other end of the spectrum, SCAG began
development efforts in 2012 but did not apply their ABM to an adopted RTP until 2020.

Model development costs ranged greatly. Based on estimates from consultants who had
worked with a range of agencies, some small agencies at the low end reportedly had stood up
relatively simple activity-based models (e.g., based on previously estimated ActivitySim donor
models, without special generators, and with high-level calibration only) for budgets of $200,000
or less, although it was noted that these costs did not include data development conducted in-
house or under separate contracts (which would be a significant portion of the overall effort). At
the high end, larger agencies reported spending $1-2 million for a well-calibrated model with
special generators addressed that was considered fully production-ready. These costs did not
include expenses associated with developing input and validation data, model evaluation, and
internal staff time to develop competence with the new model.

Several staff recommended that contracting for model development should be structured

as a phased approach, with well-defined milestones for delivering different phases of the model
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and specified static and dynamic validation thresholds that a draft model must meet or exceed
before considering a phase complete. For example, as Oregon DOT worked with a consultant
team to set up the RVMPO’s model, three phases of validation were built in with pre-specified
static validation thresholds, as well as a set of five example projects to be implemented as a
dynamic validation test. This approach was reported to have been useful in exposing problems
and allowing correction prior to adopting the model.

Where practitioners encountered significant delays in meeting intended model
development and adoption schedules, repeatedly cited causes of delay included challenges in
obtaining needed input data, as well as difficulties encountered by staff in getting up to speed on

new model workflows and addressing errors and software bugs.

8.2.4 Resource Needs

In-house modeling teams ranged from small teams of 3 FTEs to over 15 FTES, and
included modeling, GIS, and land-use forecasting teams. Most MPOs used limited ongoing
consultant support, but did pay vendor fees or ActivitySim consortium dues as well as software
licenses. One exception, the Alameda County Transportation Commission, is heavily reliant on
consultant support to both develop and apply models.

MPOs utilize a mix of cloud-based and physical computing resources, and several larger
agencies maintain multiple models to varying degrees for different purposes and stakeholders.
Agencies using Amazon Web Services (AWS) reported that they were able to achieve reduced
runtimes compared to previous configurations, as well as reducing burdens that would otherwise
be placed on their organization IT teams. However, one agency reported that they had seen
additional errors or inconsistencies in model results occur when using cloud computing,

indicating a need for testing on the intended configuration during the model development
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process. While specific configurations and resources varied across agencies, most practitioners
emphasized that computing needs were secondary to model development, data collection, and

staffing needs in terms of overall budget impact.

8.2.5 ABM Benefits

Interviewees highlighted several types of analyses that a shift to an ABM allowed, such
as assessing equity impacts of policy choices, understanding road pricing impacts on various
market segments, evaluating emerging modes and reflecting their anticipated operating
characteristics, better quantifying greenhouse-gas-emissions scenarios, and understanding
impacts of changing demographics. Some interviewees also commented on additional benefits
such as additional time of day analyses and finer-grained zones that would better model active
transportation, though those benefits were more a result of a more highly specified model than
intrinsically tied to an ABM. In the post-COVID-19 era, the ability to better reflect work from
home and telecommute modes was also raised as a significant value-add for scenario planning.

Multiple practitioners noted that enhanced visualization tools, such as automating
accessibility mapping and side-by-side scenario-comparison dashboards, were highly valued
outcomes of model enhancement efforts. While not a core model function, these auxiliary tools
helped model users and planners easily communicate insights enabled by expanded functionality

of an ABM.

8.2.6 ABM Downsides/Issues

Practitioners commented that with the greater power of an ABM there was also a need for
additional staff with higher skill requirements. Many practitioners mentioned the relative

difficulty of understanding the “under the hood” functioning of ABMs compared to trip-based
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models. Practitioners highlighted the need to develop post-processing scripts to fully leverage the
potential of detailed activity pattern data and evaluate key policy questions. In smaller, less-well-
staffed organizations, the trade-off between building up these tools and supporting infrastructure

and meeting more immediate plan/project-level modeling needs was a challenge.

Several practitioners mentioned that being able to distinguish between signal and noise in
model outputs was a challenge, especially when trying to evaluate relatively small changes to
infrastructure, land use/socioeconomics, or policy in the context of a large regional model. Twin
Cities Metropolitan Council staff mentioned this challenge as both a technical challenge and a
potential political issue, as staff must evaluate whether they can trust model results to withstand
scrutiny in the context of high-profile projects.

A related challenge observed by one consultant was that where advanced models provide
the opportunity to conduct scenario testing of emerging trends or technologies, agency staff may
not always be comfortable presenting decision makers with ranges of results that reflect the
uncertainty behind these assumptions. These communication challenges can lead to staff not
taking advantage of new model capabilities. If investments are made in these functions, planning
and forecasting staff should consider ahead of time how much effort to invest in complex
depictions of technologies that are not well understood (e.g., operational details of autonomous
vehicles or drone delivery), as well as whether and how they can communicate their modeling
assumptions and results in a way that can usefully inform decision-making.

Potential lock-in with a given vendor was also highlighted as a potential issue, and one
reason why ActivitySim has been a more favored approach by agencies adopting ABMs in recent

years.
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8.2.7 Mixed Impacts

Interviewees also highlighted a number of items where the impact of an ABM was mixed
between positives and negatives.

Practitioners reported little or no real benefit for “bread-and-butter” projects in terms of
traffic assignment; several side-by-side comparisons of link-level validation results between old
and new model versions mentioned by interviewees showed comparable results. Some agencies
reported that their ABMs provided improvements to model results for transit and active modes,
but this was not a consistent finding. For example, Met Council staff mentioned that their
ABM’s mode choice module performed worse than the previous model, causing them to use a
regional STOPS model for transit analysis purposes instead of the regional travel model.

The input and calibration data needs of different models were reported to be highly
variable, with some agencies having increased their investment in disaggregate land use data,
travel surveys and transit on-board surveys, and passive mobile data. Others reported limited
differences in their input data needs relative to previous trip-based models, indicating that these
differences are more a question of model design choices and level of detail desired than an
inherent function of ABMs.

Some models used parcel-level or microzone-level land use data, while others continued
to use pre-existing TAZ geographies as their unit of analysis. Entities that use parcel-level as the
basis for their models noted that developing and maintaining this data is a major effort, and in
one case transitioned from parcel-based to microzone-based geographies in a 2" generation
model to reduce complexity.

Post-processing of synthetic population travel diaries and generally building an

understanding of how to mine output datasets was brought up by many practitioners as a
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substantial opportunity, but also a significant technical challenge that required more technically
capable staff and significant training and investment in building up necessary tools and scripts to
make analyzing these trip patterns possible and an integrated part of the forecasting workflow.
Practitioners were asked whether the transition to ABMs resulted in changes to the
available pool of consultants able to contribute to modeling work. Responses to this question
were mixed, with some interviewees recalling that travel-demand modeling practitioners quickly
learned how to work with ABMs and did not see any significant obstacles. Others reported that
usability challenges resulted in concerns and objections to transitioning to the ABM as a
production model from consultant practitioners (or in one instance, other regional agencies). One
interviewee noted that while some consultants withdrew from modeling work after adopting an
ABM, other consultants from national firms became more interested in working in the market,
with the net result that the overall quality of modeling expertise in the region improved over

time.

8.2.8 Overall Evaluation

When asked if, knowing what they do now, they would choose to adopt an activity-based
model again for their agency under the same set of needs and circumstances, nearly all
interviewees responded affirmatively. The few exceptions that practitioners could point to of
agencies that regretted this decision were small MPOs with limited staff capacity and early
adopters who got ahead of well-developed practice and would have benefitted from waiting for
modeling infrastructure to become better developed.

Several agencies expressed enthusiasm for in-progress or planned efforts to transition
their models from proprietary platforms to ActivitySim. Practitioners expressed optimism that

ActivitySim may fix key problems with existing models, improve model runtimes, and reduce
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lock-in/dependence on vendors and consultants to respond to issues. For example, Twin Cities
Metropolitan Council staff mentioned that phase 1 work to adopt PopulationSim, ActivitySim’s
population synthesizer, has been very successful. Future follow-up with agencies currently
transitioning to ActivitySim-based models may be useful in confirming whether these hopes
have been realized.

Issues that interviewees raised as regrets or pain points included:

« Using parcel-based land use data: One practitioner reflected on as being too laborious
to develop and maintain for negligible benefits to model results, while another agency
noted that while they maintain parcel-based land use data, they have simplified their
ABM to use aggregated microzone-level inputs instead.

 Adding too many complex features to the model, or investing in a high level of
complexity in modeling speculative modes where operational characteristics are
currently unclear.

- Inefficient code and long model runtimes.

- Poor tools for dealing with population/land use changes, which was noted as a
significant pain point in several older models.

A comparison of several key characteristics of the agencies interviewed and their models is

presented in the matrix below.
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Table 8.2 Agency Comparison Matrix

Timeline
Organization Reason for adoption Cost
Began Draft Model Production Retired OId 2nd
Development Model Model Generation
Land use responsiveness,
SACOG capturing aging population 2005 2006 2008 2008 2012
impacts
MWCOG Achieving state of practice 2015 2023 2023+ still active $900k
model, match peer agencies
SANDAG State guidelines, equity, VMT 2009 2013 2015 2015 2016 $1M
performance monitoring
SCAG State guidelines 2012 2016-17 2020 Plan to retire $2M
Alameda cTC ~ Conformity with larger 2021 2023* 2024* Still active $1.2M
regional model
PSRC GHG reductions, road user 2006 2012 2018 Still active 2025 $1M+
charging, transit
Met Council Equity, road user charging 2012 2014 2015 2016-17 Ongoing $1g'\:n§15t
Ohio DOT Road user charging Early 2000s 2005 2005 2013 Various
NC ITRE Answer policy questions 2019 2020-21 2021 Still active $350k
Oregon DOT  GHG legislation, equity 2014 (RVMPO) 2017 2017 Still active 2030*

* Anticipated dates
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(continued from previous table)

Organization Model Platform Staff Consultant Support Data Requirements
g 1% Generation 2" Generation Notes
DAYSIM, . Parcel-level land
SACOG Cube 5TDM Yes, maintenance use/SE data
S . Need land use model,
MWCOG ActivitySim 15in TDM TBD TAZs are ok
CTRamp, ActivitySim, Yes, limited on Microzone land
SANDAG TransCAD EMME SLU, 13TDM demand assistance use/SE data
S . . Higher level of effort,
SCAG CTRamp, ActivitySim, Used alongside 4-step 2 SE. 10 TDM No or limited more challenging SE
TransCAD TransCAD model support
data development
Alameda CTC CTRamp Tied into MTC mode_l with 1 program Fully reliant on Similar to trip based
more zonal detail manager consultant support
DAYSIM, S LU 4, TDM5, 4 Yes, significant Same but more finely
PSRC EMME ActivitySim HHTS support detailed
Met Council . 3 application, 2 Prior CS on-call, Similar, frequent
(MN) TourCast ActivitySim LU currently none travel survey
Disaggregate tour-based
Ohio DOT CTRamp, model. Pop synth, trip list 8 DOT plus Yes, limited on-demand assistance
Cube . : MPO staff
moving to simple ABM
NC ITRE TransCAD Disaggregate trip-based 2 TDM plus Yes, recurring Additional household
model external SE survey work surveys
Statewide is currently tour- More data. represent
Oreqon DOT CTRamp, ActivitySim based. Once all MPO 7 development, No or limited variablés r’r?ore
g TransCAD y models are ABM, intended 4 applications support

to adopt statewide ABM.
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Based on a synthesis of the various practitioner interviews and agency/model
characteristics, several key themes emerged as important considerations for Utah’s MPOs and

statewide agencies in considering their strategies for model development and enhancement.

8.2.9 Clarity on Goals of Advanced Models

Multiple practitioners emphasized that Utah’s public agencies should begin their decision
process on the directions for their model roadmap not from the question of “What is the best type
of model?” but rather “What questions do we need our model to answer?” Practitioners
repeatedly noted that activity-based models do not provide an inherent advantage in accurately
depicting and forecasting network volumes, and stressed that the primary value of a more
complex and costly model is the ability to answer new policy questions in a valid way, including
topics discussed under “When and Why” above.

Accordingly, several interviewees noted that a clear understanding of the goals of an
enhanced model can and should guide what model elements are built to a high degree of detail,
and which should be excluded or adopted (at least initially) in a more simplified form. As one
Twin Cities Metropolitan Council modeler said, “models need to earn complexity,” and during
the scoping and design phase it’s valuable to consider whether more sophisticated components
will result in meaningfully improved results for likely use cases. Another practitioner, Wu Sun,
reported that SANDAG had concluded that its current model version had elements that added
more complexity than they were worth, and has added projects to simplify these modules to their
development roadmap.

Takeaways: Prior to UDOT or partner agencies pursuing development of activity-based
models, modeling staff, planners, and agency leadership should collaborate on identifying key

policy needs that may require travel model analyses and which current modeling paradigms are
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inadequate to address. These policy questions and priorities should drive decision-making about
whether activity-based models are a good solution, and if so what design features should be

prioritized.

8.2.10 Differences Between Early and Late Adopters

Interviews with practitioners confirmed a trend that earlier models (those developed in
the 2000s or early 2010s) tended to be more bespoke, required a much higher level of investment
in programming key model components and estimating the model, and led to staff facing greater
challenges around model usability.

For example, the SACOG model, the first version of which was completed in 2007, was
described as having received “withering criticism” from forecasting consultants in the local
market as being very challenging to use in applications where land use changes needed to be
modeled. While best practices have been found, these efforts remain challenging and require
multiple times as much budget or staff time to conduct compared to their prior model.

To mitigate these issues, some agencies have invested in major overhauls or
redevelopment of subsequent versions of their models, including transitioning from proprietary
platforms such as CTRamp to ActivitySim.

Later adopters were less likely to cite the same level of difficulty with their models,
driven both by model development consultants having gained more experience through ‘learning
by doing’ and greater availability of ‘donor models’ from other regions that can be adapted for a
new region. Due to the availability of pre-existing model frameworks, multiple interviewees
recommended that Utah agencies should ensure that they take advantage of existing resources
and ensure they do not pay development costs for software that is available from vendors or

other agencies.
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Takeaways: Major usability issues that have been encountered by practitioners in older
activity-based models are not representative of what Utah agencies can expect from a state-of-the

practice model using more modern technology.

8.2.11 Staff/Agency Capacity

The size of an interviewee’s agency tended to correlate with more positive descriptions of
their modeling practice and experiences with activity-based models. At one extreme, groups with
12-15 modeling staff were more able to avoid overreliance on consultants, have separate model
development and model application teams, and build technical infrastructure that improves
model usability. They also appeared to have more capacity to develop detailed model input data
that take full advantage of ABMSs’ potential. As one practitioner noted, “the power of a
disaggregate model comes from disaggregate socioeconomic inputs,” and those with larger staffs
and dedicated land use / socioeconomic forecasting teams were better equipped to develop those
inputs with a high level of detail, as well as leveraging detailed survey data. Opinions differed
between practitioners on whether having separate model development and model application
teams is advantageous.

At the opposite end, Ohio DOT reported that small MPOs with one or less than one FTE
devoted to modeling often lack the capacity to run an activity-based model (and in some cases
struggle to run or maintain a four-step model), while one consultant mentioned examples of a
DOT and MPO that developed and then abandoned ABMs. In other cases, practitioners brought
up examples of ABMs that have been developed and remain in use as a ‘model of record’ for
regional planning and air-quality conformity processes, but are not used on a day-to-day basis by
agencies for project-level or sub-regional planning processes due to their complexity (Baltimore

and Chicago’s MPO models were brought up as examples).
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MPOs that have successfully deployed ABMs with small staff more frequently reported
difficulties or persistent downsides to their models, including challenges with incorporating land
use changes, achieving good performance from certain model modules (e.g., mode choice),
adequately distinguishing signal vs. noise in model outputs when considering relatively small
projects or policy changes, and usability problems (e.g., excessive runtimes).

Takeaways: If Utah’s agencies decide to pursue development of activity-based models,
recruitment, training, and retention of skilled technical staff should be a key priority. Additional
FTEs may be required in order to successfully apply and maintain ABMs. Caution should be
used in developing ABMs for smaller agencies, which may not have adequate staffing and

resources to make good use of a more complex and labor-intensive modeling paradigm.

8.3 Development Timeline and Model Transition Process

For many agencies, model development timelines are closely tied to their regional
transportation planning and air-quality conformity timelines. A key difference in approaches to
ABM adoption is whether agencies attempt to develop and complete an ABM to the point that it
is ready for planning use within one four-year cycle, or whether this process is extended across
multiple cycles. While some practitioners were able to achieve this compressed development
timeline, the general consensus was that extending model development over two plan cycles is
preferrable in terms of providing the agency adequate time to ensure the model is adequately
validated and calibrated, and staff are sufficiently trained to deploy the model correctly and take
advantage of new capabilities. This approach necessarily entails continuing to invest in
maintaining the previous model through a longer duration than would be necessary under a more

accelerated timeline.
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As mentioned in the ‘Development Processes’ section above, several practitioners
emphasized that clear benchmarks for both static and dynamic validation that a new model
should be built into model development contracts at multiple milestones in the overall
development process. In the event that a draft model does not meet these benchmarks, the owner
agency should not accept the model as complete until validation benchmarks are met.

Takeaways: Utah agencies should be aware that development of an application-ready
ABM in time for the next RTP cycle (beginning in 2027) would be a challenging development
timeline and result in significant risk to those planning processes. Procurement documents and
contracts should clearly lay out static and dynamic validation targets that must be met in order
for owner agencies to accept new models as complete. Finally, agency staff beginning a model
development process should plan for how long existing models will be maintained before they
are retired and what resources will be required to do so; periodically revisit those plans as the
model development and application process continues; and communicate those plans to model

users and stakeholders.

8.3.1 Model Infrastructure

As previously mentioned, activity-based models varied substantially in terms of both
model complexity and the level of investment in supporting scripts and tools to help
modelers/analysts use the ABM for various tasks. Some of the supporting infrastructure that
practitioners noted had been significant value-adds for their agencies included:

« High-quality population synthesizers: Population synthesis typically occurs

outside of the main model flow, and ensuring that usable tools exist for manipulating

disaggregate populations was mentioned as an important priority by one consultant.
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Agencies that have not invested in this infrastructure, such as DRCOG and SACOG,
were highlighted as causing significant ongoing challenges for users.

Model documentation: Practitioners who had received models with limited
documentation reported substantial difficulties in getting staff trained and fully
competent to use the model and navigate operational issues, requiring substantial
internal effort to produce adequate documentation. One practitioner emphasized that
documentation should occur throughout the model development process, rather than
being a final deliverable created separately from the main work effort.

Input checking: Building in automated tools to check inputs for validity prior to
launching the main model stream was recommended by PSRC staff as a valuable
method of avoiding lost working time when running large models with long
runtimes. This approach ensures that many input errors can be caught immediately,
rather than putting multiple hours into an overnight model run.

Output visualization and mapping tools: While these tools are not inherent to
activity-based models, multiple practitioners mentioned that visualization tools
developed as part of their model adoption process provided a high level of
immediate value in being able to easily communicate model results to decision
makers. Additionally, Oregon DOT reported that a side-by-side visualization tool
was valuable for comparing new vs. old models as well as model vs. survey data for
validation/calibration purposes.

Variable sampling rates: The foundation of activity-based models is generation of
a synthetic population sample. By default, this sample is equal to 100% of the
estimated or projected actual population of the model region. However, multiple

practitioners mentioned that building in the flexibility to adjust the sampling rates of
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the activity-based model (in terms of the percentage of the synthetic population
sampled) for different use cases was valuable. With this functionality, less or more
than 100% of the true population is generated as a synthetic population, and then
trips are scaled accordingly for assignment purposes (for example, a 50% sample
rate would be expanded by a factor of 2). Less than 100% sample rates allow for
faster model runtimes for early screening (e.g,. of major policy moves or early-stage
evaluation of large numbers of projects or scenarios), while greater than 100%
sample rates can reduce simulation variance between runs and provide greater
confidence that differences between model runs are not driven by model noise.
Takeaways: While completing all of the above infrastructure may not be feasible during an
initial model development contract, population synthesis and documentation should be
prioritized from the beginning. Other assets that may not be completed during the initial
development process should be prioritized for future updates within a model development

roadmap.

8.3.2 Collaboration Frameworks

Many practitioners referred to the importance of developing venues for collaboration
between the model owner agency and other key stakeholders, including municipalities, partner
agencies, and consultants. A common theme was that ongoing working groups were highly
useful for disseminating key information to the range of model users across a region, especially
in the transition process as practitioners must adjust from a previous modeling paradigm to a new
(and more complex) activity-based framework. Entities frequently reported meeting on an annual
to quarterly basis to deliver training sessions, introduce new model updates/functionalities, and

share project examples or potential directions for future practice.
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An additional opportunity for collaboration in the model development and adoption
process that was recommended by multiple interviewees was building in a peer or expert review
panel into the model adoption process. Rebekah Straub of Ohio DOT mentioned that having a
separate contract for an expert reviewer was valuable not only to ensure a new model was
correctly implemented and yielded reasonable results, but also as way to guarantee that multiple
consultants were familiar with and able to run the model prior to adoption. SCAG reported using
this approach during a model enhancement process subsequent to adopting their ABM.

For DOTSs that are responsible for maintaining or interfacing with multiple models, a key
factor raised by one informant was the importance of standardization between various models in
terms of software versions and compatibility with post-processors and other model infrastructure.
Emphasizing this interoperability through ongoing collaboration can avoid duplicative effort or
ongoing compatibility challenges.

Takeaways: The Utah Model Users Group (MUG) would likely be an appropriate venue
for ongoing collaboration, knowledge sharing, and training on any new models developed in the
state. Any agencies developing new models should strongly consider contracting for expert
review at key milestones in the development process. If multiple models across the state
transition from trip-based to activity-based, consistency between these models and sharing of

technical resources should be prioritized.

8.3.3 Hybrid Models

Hybrid travel demand models represent an alternative to both traditional 4-step models
and activity-based models. These models integrate more disaggregate data into the estimation of
the model behavior process but contain other model processes that are more simplified which

reduce the computational needs and processing time compared to activity-based models. Some
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hybrid models require the same input needs as traditional 4-step models, requiring housing and
employment land use inputs by TAZ that are then converted into a synthetic population during
the model process. Hybrid models may also incorporate machine learning and big data to better
represent travel behavior while not requiring a full travel diary for each synthetic resident of the
model area.

Hybrid models are now in use in places such as Charleston, SC; Hampton Roads, VA;
Knoxville, TN; Indianapolis, IN; and for statewide models in North Carolina, Tennessee,
Michigan, lowa, Nebraska, and New Mexico.® While these models vary in complexity, they all
have a common theme in that the models typically begin with a population synthesis, followed
by disaggregate model steps, then aggregate trip distribution and assignment processes.

A contemporary version of a hybrid travel demand model has just been completed for the
Triangle Regional Model (TRM) in the Raleigh-Durham Metropolitan region of North Carolina.
This model utilizes machine learning processes for person-level trip production modeling to
specify a large number of discrete variables, nested logit destination choice models, and linked
non-home based and home-based trips by location and mode. Figure A.1 (below) shows a
summary of the model process.

During the practitioner surveys, developers of the new Triangle Regional Model were
interviewed to understand the impetus for transitioning to a hybrid model rather a full ABM.

Rationale for selecting a hybrid model included:

9 An Advanced State-of-the-Practice Hybrid Travel Demand Model for the North Carolina
Research Triangle Region; Bernardin, Ward, Huntsinger, Balakrishna, and Sundaram; 2023;

https://www.caliper.com/pdfs/trbam-23_trm.pdf
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. Did not require substantial changes to how TAZ-level data was prepared and
updated.

. Represents a step towards activity-based without having to introduce all of the
complexity and drawbacks of a full ABM (including cost, run time, data needs,
and overall complexity).

. Emphasis was placed on accessibility and disaggregate population which still
allows for equity analysis and improved non-motorized modeling.

. Model development and implementation costs were less than $500K (excluding
survey data or staff support hours) and the process was completed in
approximately 18 months.

Development of a hybrid travel demand model can provide an intermediate step from trip-based
to activity-based models, allowing agency staff and other users time to gain familiarity with
some elements of an activity-based framework with a smaller increase in complexity.
Development and adoption of a hybrid model may also allow for an accelerated timeline, such
that a new model can be developed and staff can acquire proficiency with it within one regional

planning cycle.
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Takeaways: If Utah agencies determine that current trip-based models do not adequately
meet their modeling needs, they should consider whether hybrid model designs may adequately
meet near-to-mid-term policy priorities compared to a full activity-based model, and if so weigh
the pros and cons between:

-Developing and adopting a hybrid model as a long-term solution
-Developing and adopting a hybrid model as a first step towards a planned transition

- Transitioning directly to a full activity-based model.
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