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EXECUTIVE SUMMARY 

Tour-based and activity-based travel demand models are generally considered more 

theoretically robust compared to their trip-based counterparts, as activity-based models (ABMs) 

explicitly model individuals making travel choices in contrast to the aggregate nature of trip-

based models. There have been a number of comparisons between trip- and activity-based 

models, but these comparisons focus almost exclusively on the technical ability of the two model 

types, while not considering the practical benefits an ABM may or may not have to a 

transportation agency. This research performs a more holistic comparison between trip- and 

activity-based models, focused specifically on the practical differences between model types, 

both in terms of usability and capability for complex analysis. We use the existing Wasatch Front 

model as a representative trip-based model, and an ActivitySim implementation in the same area 

as a representative ABM. We create three hypothetical scenarios in both models: a change in 

land use, an improvement to commuter rail service, and an increase in remote work. We discuss 

the process of creating each scenario in both models, and perform several example analyses with 

each scenario and model. We find that many commonly cited reasons for the lack of ABM 

adoption may not be as applicable as previously thought. ABMs are often considered more 

complicated than trip-based models, requiring more data and computational resources. While 

ABMs do require more input data, we found that in our case the complexity of the model and the 

computational resources required were similar between model types. Additionally, the ABM 

allows for much more intuitive and straightforward interpretation of results.  
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1.0 INTRODUCTION 

In travel demand modeling, activity-based models (ABMs)1 have been championed by 

researchers and many practitioners as being theoretically superior to the trip-based models 

historically used in transportation planning efforts since the 1950s (Rasouli and Timmermans, 

2014). ABMs explicitly model individuals, in contrast to the aggregate nature of trip-based 

models, and so in theory are able to represent travel behavior more accurately. Additionally, the 

focus on individuals in an ABM can allow for more detailed post-hoc analysis of model outputs 

compared to a trip-based model. 

There have been a number of comparisons and case studies between trip- and activity-

based models (Ferdous et al., 2012; Mouw, 2022; Zhong et al., 2015), but these comparisons 

focus almost exclusively on the technical ability of the two model types. There is little discussion 

in the literature of the practical benefits an ABM has, if any. In fact, while trip-based models are 

almost ubiquitous among transportation agencies, many agencies have delayed or declined to 

transition to an ABM citing additional data requirements, staff training, computational resources, 

and related concerns (Miller, 2023). 

In this research, we perform a more practical comparison of ABMs to trip-based models, 

with a particular focus on the practical considerations an agency would need to make in 

                                                 

1 The term “activity-based” model as used in practice usually refers to a “tour-based” model described in the 

academic literature (Miller, 2023). Both model types use disaggregate approaches to model travel demand, but in a 

tour-based model the focus is on re-creating travel journeys, while an activity-based model tries to model the need 

for and participation in activities, with trips as an outcome of activity participation. In this report, we use the 

practical language and refer to presently implemented disaggregate travel models as “activity-based” models. 
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transitioning to an ABM. We additionally discuss the potential practical advantages regarding 

the quality and characteristics of travel analyses that an ABM allows. Though this research 

occasionally makes quantitative comparisons between model types, we do not focus heavily on 

model accuracy (either to each other or to observed data), as this can be adjusted in any model 

type through model calibration. Instead, this research seeks to illustrate the differences between 

trip- and activity-based models in a way that would be practically useful to an agency 

considering transitioning to an ABM, noting potential pain points both discussed in the literature 

and experienced in this research. 

To compare the model types, we first identify three main goals of travel demand 

modeling, which are to model travel behavior in response to changes in land use, transportation 

infrastructure, and social/economic factors. We then create three hypothetical model scenarios, 

one for each goal identified. These scenarios are the addition of a new development, an increase 

in commuter rail service, and an increase in remote work, respectively. Each of these scenarios is 

created in both a trip-based and activity-based model representing the Wasatch Front region of 

Utah, USA. We discuss the process of implementing each scenario, as well as perform a variety 

of post-hoc analyses, for both model types. 

The document proceeds as follows: Chapter 2 provides an overview of the literature 

discussing the differences between trip-based models and ABMs, including the theoretical and 

analytical benefits of each framework. Chapter 3 first describes the models used in this research, 

namely the existing regional trip-based model and an activity-based model constructed to support 

research activities in the region. This section also describes the scenarios designed to test the 

usefulness and applicability of the different model frameworks. Chapters 4–6 describe the 

findings from each scenario, alongside a discussion of related limitations and implications. 
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Chapter 7 provides a summary of our findings and a discussion of our conclusions, along with a 

set of recommendations. Chapter 8 (Appendix) presents a related analysis of professional 

attitudes and perspectives on travel-model framework implementation from across the United 

States. 
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2.0 LITERATURE REVIEW 

Travel demand modeling in the modern sense has its origins in the 1950s, with the 

Chicago Area Transportation Study (Chicago Area Transportation Study, 1959) being one of the 

first urban planning studies to use the now-ubiquitous “four-step” modeling framework 

(McNally, 2007). Up to this point, most urban transportation planning used existing demand or 

uniform-growth travel forecasts to model travel demand, but the Chicago Study used a 

combination of trip generation, trip distribution, modal split, and network assignment models to 

more accurately represent travel behavior (Weiner, 1997). Since then, there have been numerous 

studies iterating on the “four-step” (more appropriately termed “trip-based”) framework, and 

trip-based models are now the primary tool used in forecasting travel demand across the United 

States (Park et al., 2020). 

These trip-based models are not without problems, however. Rasouli and Timmermans 

(2014) give several shortcomings of trip-based models. First, they use several sub-models that 

are (implicitly or explicitly) assumed independent, and this can result in a lack of consistency or 

integrity between sub-models. For example, the assumed value of time in the mode choice model 

might be radically different than the assumed value of time in the tolling assignment model. 

Second, these models are strongly aggregate in nature, which can cause significant aggregation 

bias with high and low values excluded. Finally, they lack “behavioral realism”—that is, they do 

not have a concept of individuals making decisions, which is what travel behavior actually is. 

Jones (1979) proposed an alternative to the trip-based paradigm, namely an “activity-

based” framework that models travel behavior at an individual rather than aggregate level. An 

ABM places the focus on “activities” rather than “trips” as the basic unit of analysis, and predicts 

a sequence of activities for each individual and household, with information such as activity 
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location, start time, and duration, using a high level of temporal and spatial granularity. “Trips” 

are then journeys from one activity to the next (Pinjari and Bhat, 2011). By adopting this 

activity-centric framework, ABMs provide a more consistent and comprehensive representation 

of travel behavior. They take into account complex dependencies and interactions within the 

model as a whole and at an individual level. ABMs acknowledge that travel choices are not made 

in isolation, but rather influenced by the preceding activities. This means that, for example, if an 

individual takes transit to work, they will not be able to drive home. ABMs therefore attempt to 

present a more conceptually accurate model of actual travel behavior than traditional trip-based 

models. 

Despite these advantages, many agencies have yet to adopt ABMs, and instead continue 

to use trip-based models (Miller, 2023). While ABMs may be theoretically superior in certain 

aspects, they may also have practical disadvantages, such as requiring more detailed input data 

and greater computational resources. It is also not always clear if ABMs provide substantially 

“better” forecasts than their trip-based counterparts, nor if the tradeoff between increased labor 

for increased sensitivity make sense for every planning agency. This literature review presents an 

overview of both modeling frameworks, and discusses the advantages and disadvantages of 

using an ABM. 

2.1 Overview of Model Types 

Trip-based models are often referred to as “four-step” models due to their four 

fundamental sub-models: trip generation, trip distribution, mode choice, and network assignment 

(National Academies, 2012, p. 28). Models can be more complicated than these four steps, 

possibly including integration with a land use forecast, iteration between mode and destination 
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choice, etc., but the “four steps” are the central component of any of these models (McNally, 

2007). 

In a typical trip-based model, travel demand is predicted based on aggregate population 

data, often delineated by transportation analysis zone (TAZ). Each sub-model relies on this 

aggregate data; for example, the modal split sub-model will often use average TAZ income as an 

input (National Academies 2012 p. 14). Many trip-based models include a disaggregation step, 

where this aggregate data is segmented along variables such as household size and vehicle 

ownership. Regardless of the segmentation variables used in the first three model steps, the 

resulting trip matrices by mode and time of day are then assigned to a transportation network.  

ABMs differ significantly from this approach. Rather than using aggregate data, ABMs 

use data representing an actual or synthetic population, with individual person and household 

data (Vovsha et al., 2005). These models use an activity or tour scheduler to assign a daily 

activity pattern (DAP) of zero or more tours to each individual, where a tour is a series of trips 

that begin and end at home. These DAPs are restricted temporally, spatially, and modally; i.e., 

each person has a logical and followable sequence of trips and activities (Bowman, 1998). For 

example, if a person took transit to work, they cannot “drive alone” from work to lunch. ABMs 

output a list of tours and trips by person, time, location, and type, and can assign these trips to a 

transportation network in a similar manner as in a trip-based model. In effect, an ABM replaces 

the first “three” steps of the traditional “four-step” approach. 

2.2 Comparison of Modeling Frameworks 

In discussing the differences between ABMs and trip-based models, there are really two 

comparisons that need to be made: how the population data is structured, and how travel is 

organized. Trip-based models generally use aggregate population data while ABMs use a 
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synthetic population of disaggregate person data, and trip-based models organize travel into trips 

while ABMs organize travel into activities and tours. The following sections explain these 

aspects of travel demand modeling and discuss the claimed advantages and disadvantages of 

each model type. 

2.2.1 Population Data 

The aggregate population data used in trip-based models can vary in origin and level of 

detail, but the basic concept is the same: The study area is organized into generally small zones, 

and certain demographic and socioeconomic data is known or obtained for each zone (National 

Academies, 2012, p. 14). This includes data such as number of households, average household 

income, population, number of workers, etc. Rather than predict travel behavior using only this 

zone-level aggregate data, many models include a “disaggregation” step, which classifies the 

households in a zone along variables such as household size, vehicle ownership, and number of 

workers. For example, a 1000-household zone with an average household size of 3 may be 

classified into 500 2-person and 500 4-person households.2 This disaggregation is useful, as 

travel behavior (such as the number of trips made) can vary significantly based on a household’s 

classification. 

Subsequent model steps then use this disaggregated data in their estimations. For 

example, the model may represent a 2-worker, 1-vehicle household making 3.8 work trips on an 

average weekday, while it may represent a 1-worker, 1-vehicle household making fewer work 

                                                 

2 The specific method for classifying households may differ between models, so different models will have a 

different distribution of households along each variable used for classification. 
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trips. The trips are then added to obtain the total number of trips produced by each zone 

(National Academies, 2012, p. 37). 

This approach is relatively straightforward: The required input data is usually easy to 

obtain, the trip generation models are often simple, and it is computationally inexpensive 

(National Academies, 2012). However, the initial segmentation of the aggregate population data 

limits the types of analyses possible. An analysis based on parents’/adults’ highest received 

education, for example, would require determining the number of households in each TAZ with 

each possible combination of education level. This can theoretically be done, but more detailed 

and varied analyses would require more levels of segmentation, greatly increasing the number of 

classifications needed. Since the model needs to carry these segmentations through each model 

step, modelers need to estimate trip rates, mode choice equations, etc. for every classification, 

and while relevant real-world data may exist, sample sizes approach zero quickly, and so the 

estimates have little statistical value (Moeckel et al., 2020; National Academies, 2012). Further, 

combining these segmentations at any point precludes that segmentation from use in subsequent 

model steps as well as in any post-hoc analysis. 

This approach becomes a particular issue in equity analysis because it is perhaps 

impossible to determine equitable distribution of “winners” and “losers” of a potential policy 

without using demographic variables in the trip generation, destination, and mode choice steps 

(Bills and Walker, 2017). Though many studies have shown that trip production and mode 

choice behavior differ by ethnic group even after controlling for income (Bhat and Naumann, 

2013; Yum, 2020; Zmud and Arce, 2001), including such variables in travel demand models can 

be problematic. Does coding such a variable in a mode choice model represent discrimination? 

Or does doing so assert that present differences resulting from unequal opportunity will persist 
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into future planning years? Regardless of the reasons for their exclusion, in a trip-based model an 

analyst cannot use these variables in a post-hoc analysis of a transportation policy because the 

trip matrices do not contain the adequate segmentation. 

An alternative approach to population data, and the approach that ABMs use, is to use a 

full synthetic population. A synthetic population takes demographic and socioeconomic data at 

various levels of detail to create a “population” with generally the same attributes as the study 

area (National Academies, 2012, p. 93). The goal is to have a population that is functionally 

similar to the actual population, but without the privacy concerns of using real data. Castiglione 

et al. (2006) argue that the major advantage with this approach is that the demographic and 

socioeconomic data is known at the person and household level, rather than aggregated at the 

zone level. An ABM ties decisions in each model step to a specific individual, and so the 

individual-level socioeconomic data remains available throughout the modeling process 

regardless of the specific variables used in each model step. This allows, for example, an equity 

analysis to identify the “winners” and “losers” of a proposed development without needing to 

encode demographic variables into each step of the model. 

Bills and Walker (2017) used the 2000 Bay Area Travel Survey to create a synthetic 

population and compare the effects that certain scenarios had on high-income and low-income 

populations. With a 20% reduction in travel cost, they found that high-income workers benefited 

more than low-income workers. They did similar comparisons for scenarios involving reduced 

travel times for different mode choices and saw the effects each scenario had on the high- and 

low-income workers. These types of analysis, which are difficult with aggregate population data, 

can be very valuable in transportation planning and policy making, particularly when equity is a 

priority. 
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It is important to note that while many connect them only with ABMs, synthetic 

populations can be used in running trip-based models as well. Trip-based models using a 

synthetic population—often called trip-based microsimulation models or hybrid models—do 

exist (Walker, 2005), but these are relatively rare in practice. 

Figure 2.1 gives a visualization of an example “information pipeline” for a model using 

aggregate data and a model using a synthetic population. In the aggregate data model, it is 

impossible to know the trips made by, for example, 2-worker, 1-vehicle, low-income households 

after the mode choice step; it only describes trips made by households with fewer vehicles than 

workers. However, an activity-based model with a synthetic population models individuals, and 

so an analyst can trace each trip to a specific person. All information is known at each point in 

the model regardless of the data used in previous steps. 

2.2.2 Travel Behavior 

The other primary difference between trip-based models and ABMs—and the main 

difference from trip-based microsimulation models—is that ABMs organize travel into “tours,” a 

sequence of trips that begin and end at the home, rather than just trips. We should note that 

Miller (2023) argues that many current “activity-based” models ought to be labeled “tour-based” 

due to this focus on building tours. In contrast, “activity scheduling” models explicitly model 

activity participation, and trips emerge as the means to get from one activity to the next. 

However, in practice there are few true “activity scheduling” models, and the term “activity-

based” is commonly used to refer to both activity scheduling and tour-based models. 
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(a) Aggregate data 
 

 

 

(b) Synthetic population 
 

Figure 2.1 Flow of data in an aggregate model (a) and a disaggregate model (b). 
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A typical trip-based model forecasts trips based on empirical trip rates, usually by trip 

purpose and by household type (for example, low-income, 1-vehicle households make a certain 

number of “home-based work” trips) (McNally, 2007). The model then assigns an origin and 

destination, mode, and often a time of day (peak/off-peak, etc.) to these trips, resulting in a list of 

trips between each zone by mode and purpose. A trip-based microsimulation model may use 

choice models rather than aggregate data for some of the model steps (Moeckel et al., 2020), but 

the end result is similar: a list of trips by person, noting mode and purpose. However, this trip list 

may be inconsistent, and the forecasted trips may not be physically possible to complete in any 

sequence, as there is no sense of “trip-chaining.” The hope, though, is that over an entire 

population the inconsistencies would cancel out, leaving an overall accurate forecast. 

ABMs, on the other hand, explicitly model this trip-chaining in the form of “tours,” 

sequences of trips that begin and end at the home. This approach attempts to create consistency 

in trip origins/destinations, mode choice, and time of day: Since each trip is a part of a tour, the 

trips within a tour are dependent on each other (Rasouli and Timmermans, 2014). The open-

source ABM ActivitySim (Association of Metropolitan Planning Organizations, 2023a), for 

example, has a tour-scheduling model that determines the number of “mandatory” (work, school, 

etc.) and “discretionary” tours each individual will make, and then chooses destinations and 

modes for each tour. After making the tour-level decisions, the model does the trip-level 

mode/destination choice for each trip in the tour, including the possible addition of subtours (see 

Vovsha et al. (2005), Fig. 18.1. 

Figures 2.2 and 2.3 show examples of the trips distributed across several TAZs in the 

various model types. Figure 2.2 depicts the distribution in a typical trip-based model where the 

model represents the total number of trips between zones. These results show that the mode and 
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purpose of each trip is known, but because trip-based models can only model trips at the zone 

level, there is no way of telling who made which trips other than the segmentation used through 

each model step (see Figure 2.1 (a)). It is also not possible to construct a coherent daily list of 

trips for individuals. 

Figure 2.3, on the other hand, depicts visual representations of an individual’s travel 

made possible using a synthetic population. Figure 2.3 (a) depicts the trip distribution that a trip-

based microsimulation model could give for an individual. Though each individual’s trips are 

known, there is no guarantee of consistency between trips. For example, a trip-based 

microsimulation model could predict that the individual takes transit to work but then drives 

home, or that the individual makes two trips to recreation without ever making a return trip. The 

activity-based approach, depicted in Figure 2.3 (b), attempts to add consistency by modeling 

tours, and only generating trips consistent with each tour. 

In addition to intra-person dependencies, Rasouli and Timmermans (2014) note that 

ABMs can model dependencies between members of a household as well. A vehicle cannot be 

used by multiple people in the same household at the same time to travel to different 

destinations. Because the people within the household will have travel patterns that depend on 

the patterns of others in the household, a policy affecting one person in the household can affect 

everyone in the household no matter how directly the policy connects to them (Macfarlane and 

Lant, 2023; Vovsha et al., 2005). A trip-based model cannot forecast these effects. 

Another advantage of organizing travel into tours relates to accessibility analyses (e.g., 

How many people can a particular commercial building reach?). Dong et al. (2006) note that 

when an analyst uses trip-based models to analyze accessibility, they must analyze each zone 

based on proximity independently of travel behavior. They argue that this is a limited view of  
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Figure 2.2 Example trip distribution using aggregate data. There is little information on 

who is making which trips, and it is not known how trips are related to each other. 
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(a) Trip-based microsimulation 

 

 

(b) Activity (tour)-based 

Figure 2.3 Example trip distribution using trip-based microsimulation (a) and activity or 

tour-based models (b). 

accessibility, and discuss the “activity-based accessibility measure,” which considers all trips in a 

day rather than particular trips. As an example, if an individual does not live within a 20-minute 

drive of a grocery store, traditional measures might rate this as poor accessibility. However, if a 

grocery store lies on their path between work and home, then the accessibility should rate much 

higher. Overall, they found that the “activity-based accessibility measure” predicts more 

reasonable accessibility outcomes compared to traditional measures. 

2.3 Lack of ABM Adoption 

Though ABMs have many clear theoretical advantages over trip-based models, adoption 

among agencies has been relatively slow. Many professionals implement ABMs in proprietary 

software, which creates difficulty in maintaining and iterating on the model, Miller (2023) 

argues. Even in an open-source model like ActivitySim (Association of Metropolitan Planning 

Organizations, 2023a), Miller notes several ABM disadvantages: 
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Computational inefficiency and complicated program design: ABMs take more time, more 

computing power, and more money to run because the synthetic population needed for an ABM 

uses much more data. Areas with thousands of TAZs and millions of people have historically 

needed a supercomputer, and it has cost much more than what is spent to run trip-based models. 

If a region can see similar results using a trip-based model, they may decide not to invest in an 

ABM. 

Absence of a standard model system: The modeling systems are often designed with different 

approaches and for specific areas making it hard to transfer from one urban area to another. This 

also makes it difficult for agencies to determine the best approach and decide which one to 

implement. In relation to this, Miller also states that the pressures of publishing unique and 

ground-breaking research in academia can deter researchers from converging toward best 

theories and methods. 

Lack of resources: Most ABMs were developed in academic settings which often lack 

resources, and possibly desire, to put them into practice. This leaves it up to governments and 

consultants to put the models into practice, but these organizations can be hesitant to promote 

software development and invest in new systems. 

For these reasons, as well as the inertia of current practices, many agencies and 

organizations in the U.S. continue using trip-based models for demand forecasting and policy 

analysis. 

2.4 Research Gap 

Although there has been much research on ABMs and their theoretical advantages, 

practical comparisons of the model frameworks have been limited. It is often taken as a given 
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that ABMs are unilaterally superior to traditional trip-based models due to their better theoretical 

foundation, but it is not clear if that better foundation yields better results in terms of analytical 

flexibility or policy outcomes. Ferdous et al. (2012) compared the trip- and activity-based model 

frameworks of the Mid-Ohio Regional Planning Commission and found that the ABM was 

slightly more accurate to observed data at the region level, but about the same at the project 

level. Zhong et al. (2015) found significant differences in the predictions from an ABM 

compared to a trip-based model in Tampa, Florida, but Mouw (2022) found that both model 

types had similar prediction quality when compared with observed data. 

These comparisons have somewhat contradictory findings, and certainly do not present 

an overwhelming victory for ABMs. Each of these comparisons, however, focused on the 

accuracy of the two frameworks, but do not address the methodological differences between 

model types. What types of data collection/synthesis does each model type need? Can certain 

analyses only be done through (or made easier by) one of the model types? What would an 

agency need to transition from a trip-based model to an ABM? Are certain types of scenarios 

suited to one model type? Though some of these questions have been discussed in the literature 

(Lemp et al., 2007), a holistic methodological comparison is lacking. The answers in the current 

literature are mainly theoretical, with little use to an agency considering the transition. 

Additionally, much of the existing literature comparing the two model types is outdated, and the 

technology of both model types may have significantly changed in recent years. 

This research aims to answer these questions by providing a side-by-side comparison of a 

potential trip-based and activity-based modeling methodology. The researchers ran several 

“proposed development” scenarios in each model and compared the strengths and weaknesses of 

each approach. We should note that this research does not focus on model accuracy, as in any 
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model type this can be adjusted dramatically through calibration efforts. Rather, the focus is on 

the methodological differences between the approaches, and the types of analyses each model 

type can do. 
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3.0 METHODOLOGY 

This research seeks to compare methodological differences between trip- and activity-

based modeling frameworks. Both model types have a wide variety of implementations, as 

individual agencies will adjust the basic model framework to match their specific needs. Rather 

than comparing each of the various implementations of both model types, which is unreasonable, 

we use a representative model for both types and note when results apply to general trip- or 

activity-based models, and when results apply to the specific models used. 

The representative trip-based model is the 2019 Wasatch Front (WF) travel demand 

model, and is the current production model used by the Wasatch Front Regional Council 

(WFRC) and the Mountainland Association of Governments (MAG). This model covers much of 

the Salt Lake City-Provo-Ogden, Utah Combined Statistical Area. We also used an ActivitySim 

implementation in the same study area as a representative ABM. The following sections discuss 

both models in detail. 

Note that the focus is not on comparing model accuracy or performance, but rather on 

comparing the process of using each model, including the types of analyses that can be 

performed. There are, therefore, few direct comparisons of model outputs between each type. 

Instead, this research highlights the strengths and weaknesses of each model type in planning and 

policy analysis, and illustrates these differences. 

3.1 WF Model 

WFRC and MAG implemented the WF model in the CUBE software by Bentley (Bentley 

Systems 2023), and currently uses it for modeling travel in the Wasatch Front, Utah area. WFRC 

provided the model directly, including land use forecasts and the current long-range 
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transportation plan. The model is taken essentially as-is, with no changes other than those noted 

in Chapters 4–6 to implement the scenarios studied in this research. 

The WF model, like many trip-based models, requires the following inputs: 

• Land use data, including information about population, employment, and socioeconomic 

variables such as income, delineated by TAZ. WFRC provided this directly as an output of 

their land-use forecasting model(s). 

• Travel skims detailing travel time, cost, etc. between each origin-destination TAZ pair. The 

WF model uses an iterative process of assigning volumes to the transportation network and 

recalculating the skims, which the model uses in the destination and mode choice model 

steps. 

• Transportation networks, including highway, transit, etc. networks connecting the TAZs to 

each other. These networks contain information such as link speed and capacity. Though the 

WF model assigns travel volumes to the network, this paper does not analyze the model’s 

network assignment results. However, we still used the network volumes to calculate the 

loaded network skims. 

• Lookup tables, used in many model steps for information such as trip rates by household 

type. We took these directly from the WF model without modification. 

• Model constants and coefficients, which some model steps such as mode choice require for 

calibration. We also took these directly from the WF model. 

Figure 3.1 gives an overview of the WF model, showing broad model steps in a 

flowchart. Like many trip-based models, the WF model follows the “four-step” approach and has 

the main steps of trip generation, trip distribution, mode choice, and network assignment. The 

model also includes a household disaggregation step at the beginning to estimate the number of  
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Figure 3.1 WF model flowchart. The distribution step includes a feedback loop where 

preliminary loaded network skims are used to perform subsequent iterations of trip 

distribution until the distribution converges. 

households by size, income group, number of workers, and auto ownership using the TAZ-level 

data and lookup tables. This does not create a fully synthetic or disaggregated population, but is 

more segmented than the initial TAZ-level data. 

The household disaggregation step takes TAZ-level socioeconomic data (such as 

population, number of households, and average income) and estimates the number of households 



 23 

belonging to each category of household size, number of workers, income group, and vehicle 

ownership. The model “caps” the household size, number of workers, and vehicle ownership 

categories at 6, 3, and 3, respectively (e.g., every household with 3 or more workers is grouped 

into a “3+ workers” category). Table 3.1 gives the WF model income groups. 

Table 3.1 Income Groups in the WF Model 

Income Group Income Range 

1 ≤ $45,000 

2 $45,000–$75,000 

3 $75,000–$125,000 

4 ≥ $125,000 
 

 

The WF model estimates an additional distribution termed “life cycle.” This distribution 

places households into one of three categories, intended to represent the presence of children 

and/or working adults in the household. Table 3.2 shows the “life cycle” categories in the model 

based on the estimated age distribution in each TAZ. 

Table 3.2 Life Cycle Categories in the WF Model 

 Presence of persons aged: 

Life Cycle  0–18 18–64  65+  

1  —  ✓  —  

2  ✓  ✓  —  

3  ✓  —  ✓  
 

 

The trip generation step uses the disaggregated household data to estimate the number of 

trips produced from each TAZ by applying average rates differing by household type. The trip 

rates vary by trip purpose and household classification. The trip generation step multiplies the 

trip rates by the number of households in each category, giving the total number of trips by 

purpose each TAZ produces. 
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The WF model contains the following trip purposes:  

• Home-Based Work 

• Home-Based Shopping 

• Home-Based School 

• Home-Based Other 

• Non–Home-Based Work 

• Non–Home-Based Non-Work 

The Home-Based Work and Non–Home-Based Work purposes use only the number of workers 

per household to determine the trip productions, and all other trip purposes use the cross-

classification of household size and life cycle. 

The trip generation step estimates the trip attractions for each purpose based mostly on 

the number of jobs by industry in each TAZ. The model also uses the number of households in a 

TAZ to estimate the home-based other and non–home-based trip attractions, and the school 

enrollment by TAZ for the school attractions. Each purpose has a different coefficient for each 

variable, and we left these coefficient values unchanged. 

Trip distribution uses a gravity model of the form 

𝑇𝑖𝑗 = 𝑃𝑖 ×
𝐴𝑗𝐹𝑖𝑗

∑ 𝐴𝑗′𝑗′∈𝐽 𝐹𝑖𝑗′
, 

where  

𝑇𝑖𝑗 is the number of trips from zone 𝑖 to 𝑗,  

𝑃𝑖 is the productions at 𝑖,  

𝐴𝑗 is the attractions at 𝑗,  

𝐹𝑖𝑗 is the cost term/function from 𝑖 to 𝑗, and  
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𝐽 is the set of all zones trips from 𝑖 can be attracted to.  

The WF model includes a “distribution feedback loop,” where the model performs a preliminary 

highway assignment to obtain congested network skims iterates until the trip distribution 

converges. 

The mode choice step uses a choice model to assign a percentage of trips by purpose to 

each mode, and the network assignment step assigns the vehicle trips through an iterative process 

to equalize travel time between potential routes. The WF model outputs include trip tables by 

purpose, mode, and time of day, as well as loaded highway networks. 

3.2 ActivitySim 

ActivitySim is an open-source ABM whose development is led by a consortium of 

transportation planning agencies. ActivitySim is highly configurable, and many agencies have 

their own bespoke implementation. This paper uses an ActivitySim implementation based on the 

implementation Macfarlane and Lant (2021) used, which is in turn based on the prototype 

configuration for the Metropolitan Transportation Commission serving the San Francisco area 

(Erhardt et al., 2011). The exact implementation is available on GitHub (BYU Transportation 

Lab, 2024). 

ActivitySim, like all ABMs, simulates transportation decisions on an individual level. 

ActivitySim has a hierarchical decision tree, where long-term decisions (such as auto ownership 

and telecommute frequency) are made first, followed by daily and tour- and trip-level decisions 

such as scheduling and mode choice (see Figure 3.2). Each of these steps determines information 

to use in subsequent steps, and it can turn on and off many steps depending on the needs for the 

model implementation. 

We can categorize the steps broadly into five groups, as shown in Figure 3.2:  
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• Aggregate: mainly involves determining impedance measures between each pair of zones 

(travel time, distance, cost, etc.). For this research, the WF model supplied these impedances 

directly from the network skims output. 

• Household/personal steps relate to long-term decisions that are unlikely to change quickly 

based on daily transportation conditions. These steps include determining remote work 

status, work/school location, auto ownership, transit pass ownership, and free parking 

availability at work. Our ActivitySim implementation models remote work status, 

work/school location, auto ownership, and free parking availability, but we do not model 

transit pass ownership and assume that everyone pays the transit fare. 

• Person daily decisions primarily concern an individual’s DAP. ActivitySim contains a step to 

assign mandatory, non-mandatory, and home DAPs based on personal and household 

information (a home DAP involves no travel). For example, full-time workers are more 

likely to have a mandatory DAP than part-time workers, all else being equal. Tour-level 

choices operationalize the DAP. ActivitySim creates tours for each major activity in the day. 

Additionally, ActivitySim determines if an individual makes an “at-work” tour (e.g., leaving 

for lunch and returning to the workplace). The model schedules and assigns a primary mode 

to each tour, as well as a primary destination for non-mandatory and joint tours. ActivitySim 

then populates the tours with trips and assigns each trip a purpose, destination, time of day, 

and mode compatible with the tour-level assignment. 
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Figure 3.2 Activity Sim model flowchart. 
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The final steps of ActivitySim are writing output trip matrices and other tables, including 

information on land use, persons, households, tours, and trips. Most of ActivitySim’s individual 

models are based on a multinomial logit model of the form: 

𝑃(𝑘) =
𝑒𝑉𝑘

∑ 𝑒𝑉𝑘𝑘′∈𝐾
, 

where  

𝑃(𝑘) is the probability of choosing alternative 𝑘,  

𝑉𝑘 is the utility of alternative 𝑘, and  

𝐾 is the set of all alternatives (as discussed in McFadden, 1974).  

The coefficients on variables such as income, age, and work status, determine the utility values, 

in addition to calibration constants for each alternative. 

ActivitySim requires similar inputs to the WF model, though it does not include its own 

network assignment process. Instead, ActivitySim uses network skims supplied from any other 

process for information on travel time, cost, etc. A discussion and comparison of network 

assignment processes is outside the scope of this project, and this ActivitySim implementation 

uses the travel skims output from the WF model directly. In practice, ActivitySim mates to 

CUBE or another network assignment algorithm for network skimming and travel time feedback. 

To clarify, ActivitySim replaces the first “three” steps of a traditional four-step trip-based model. 

ActivitySim requires population data at an individual level, including information such as 

age, household income, and home location. Due to privacy concerns, analysts rarely use real data 

for this purpose and use instead a synthetic population representative of the study area. Using a 

synthetic population instead of real data also allows for modeling hypothetical scenarios, 

including future-year forecasts. 
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This research uses PopulationSim (Association of Metropolitan Planning Organizations, 

2023b) to create a synthetic population for ActivitySim. The synthetic population aims represent 

the study area while maintaining privacy. Additionally, analysts can adjust a synthetic population 

in line with projected socioeconomic forecasts to perform future-year analyses. PopulationSim 

takes a “seed” of individuals and households as input, and populates the area with copies of these 

to match given controls such as the number of households by zone, the number of individuals by 

age group, and so on. 

The seed sample comes from the 2019 American Community Survey Public Use 

Microdata Sample (U.S. Census Bureau, 2022), which contains a sample of actual (anonymized) 

individuals and households at the Public Use Microdata Area geography (these geographies 

partition the United States into areas of around 100,000 people each (U.S. Census Bureau, 

2023)). The control totals come from two different sources: the U.S. Census and the WF model. 

Table 3.3 shows these controls as well as their geographic level and source. The geography of a 

control dictates PopulationSim’s “level of precision” in matching the control totals. For example, 

with our configuration, PopulationSim will attempt to match the average number of workers per 

household to the Census average for each Census tract, while the total population is only 

controlled for across the entire region. PopulationSim also allows setting different weights to 

each control, and Table 3.3 also provides this information. Because the Public Use Microdata 

Sample does not contain every possible combination of variable values, it is not possible to 

create a synthetic population that perfectly matches every control total. The weights allow certain 

controls to “take priority” over others; for example, with this configuration, PopulationSim will 

prioritize the average household size over the average number of workers per household if the 

model cannot satisfy the two controls. 
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Table 3.3 PopulationSim Control Totals by Geography and Source 

Control Geography Source Weight 

Population Entire Region Census 5,000 

Number of Households TAZ WF Model 1,000,000,000 

Household Size Census Tract Census 10,000 

Persons by Age Group Census Tract Census 10,000 

Households by Income Group Census Tract Census 500 

Workers per Household Census Tract Census 1,000 
 

 

Most of these controls come from Census data, with only the number of households per 

TAZ coming from the WF model data. Note also that there are many personal and household 

variables that are not accounted for in these controls, such as gender, vehicle ownership, internet 

access, etc. We do not control for these variables, and they depend on the seed persons or 

households we copy to control for the other variables. However, this process is assumed to still 

give a representative enough estimate for the uncontrolled variables without needing to model 

them explicitly. 

The outputs of PopulationSim include a persons and households table comprising the 

synthetic population. 

3.3 Initial Model Comparison/Calibration 

While this research generally does not directly compare the ActivitySim and WF model 

outputs, it is important to ensure similar performance between the two models for meaningful 

analyses. As such, we used a “baseline” scenario in both models to calibrate the ActivitySim 

implementation to the WF model. This baseline scenario uses the 2019 WF model as is. For 

ActivitySim, the baseline scenario uses 2019 Census and WF data to create the synthetic 

population, and it uses land use data and network skims from the baseline WF scenario for 
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accessibility and socioeconomic measures (where jobs and households are located) before 

running through its series of models of individual trips and tours. 

3.3.1 Validation of the Synthetic Population 

We compared the PopulationSim output with the WF model outputs to validate the 

synthetic population. The controls for PopulationSim mostly come from the Census, shown in 

Table 3.3, and the WF model uses TAZ-level population and median income data and also has a 

household disaggregation step that estimates the number of households by size and income 

group. This section compares the PopulationSim output to the WF model output for each of the 

previously mentioned variables: population, median income, and number of households by 

income group.  

Although the WF model provides data at the TAZ level, most PopulationSim controls are 

at the Census tract level, and these tracts are not a one-to-one match with the region’s TAZs. 

Because of this, PopulationSim places households in a TAZ with some degree of randomness. As 

such, for small geographic areas such as TAZs the error distribution between the two models is 

noisy. Therefore, we compare the PopulationSim and WF data by aggregating each TAZ at the 

district level (as defined by WFRC and MAG). These districts include several contiguous TAZs. 

Figure 3.3 shows the difference in district population between PopulationSim and the WF 

data. It is worth noting that since we controlled the number of households to the WF TAZ level 

data with an extremely high weight, the number of households per TAZ in the synthetic 

population match to the WF data exactly. The average household size will therefore follow a 

similar error distribution to the one shown in Figure 3.3. 
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Figure 3.3 Population by district, PopulationSim compared to the WF TAZ-level 

socioeconomic data. 
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The population from PopulationSim per district is similar to the WF data in most places, 

though there are some discrepancies especially near Herriman and Lehi, and in the far north of 

Weber county. Since total population is a region-level control, but number of households is a 

TAZ-level control, this shows PopulationSim is predicting a smaller average household size in 

Herriman and Lehi than the WF data suggests.  

Income is also an important factor in travel behavior (Zegras and Srinivasan, 2007), and 

Figure 3.4 shows a district-level comparison of median income between the synthetic population 

and the WF data. The synthetic population does have a lower median income compared to the 

WF data in many districts, but the error is, in most cases, fairly small, especially in more 

populated areas. However, both ActivitySim and the WF model use household income groups 

rather than individual household income to inform travel decisions. We used the income groups 

from the WF model (see Table 3.1), and we adjusted the groups in PopulationSim and 

ActivitySim to match. Figure 3.5 shows the difference in number of households by income group 

between PopulationSim and the WF model. This figure shows PopulationSim predicting slightly 

more high-income households and low-income households in many zones, and fewer middle- 

income households, though the error is smaller in regions with higher population. 

 It should be stressed that these graphics are not comparing PopulationSim’s outputs to 

ground-truth socioeconomic data, but rather to the outputs of a different model, namely the 

household classification process in the WF model. Both models may have errors in different 

directions, thus amplifying the perceived discrepancy in these results.
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Figure 3.4 District-level median income, PopulationSim compared to the WF TAZ-level 

socioeconomic data. 
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Figure 3.5 Households in each income group, PopulationSim compared to the WF TAZ-level socioeconomic data. 
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Note that in the synthetic population, each household has a specific income and so can be 

grouped directly, while the WF model requires a household disaggregation step to estimate the 

number of households in each income group. Figure 3.5 therefore is comparing two models for 

determining income groups, one a part of PopulationSim and the other in the WF model, rather 

than comparing the synthetic population to actual socioeconomic data. Additionally, the overall 

distribution of income is similar between the models, as Figure 3.6 shows. A production-ready 

synthetic population would match its income distribution more closely to the existing 

socioeconomic data, but as previously mentioned, this research focuses on the model process 

rather than model accuracy. Because of this focus, ActivitySim does not need to be perfectly 

calibrated to the WF model, and so for the purposes of this research the income distribution of 

the synthetic population is acceptable. 

3.3.2 Validation and Calibration of ActivitySim 

This section compares the outputs of both models to verify that trip patterns roughly 

agree. We make three comparisons between the two models’ outputs: mode split, trip-length 

frequency distribution, and remote work. 

The initial baseline ActivitySim scenario predicted a mode split significantly different 

from the WF model, so we needed to calibrate the model. The ideal approach would be to 

calibrate the mode choice model to recent travel survey data, such as from the Utah Household 

Travel Survey. However, recent travel survey data was not available for this project, and this 

research only needed a rough calibration. We therefore used the outputs of the baseline WF 

model scenario as the mode split targets. A production model would certainly use travel survey 

data and perform a thorough calibration, but that is outside the scope of this project. 
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Figure 3.6 Distribution of TAZ median income, PopulationSim compared to the WF 

TAZ-level socioeconomic data. 

Before beginning calibration, we matched the available modes in ActivitySim to those in 

the WF model, creating a “crosswalk” between the modes in each model. The available modes 

between ActivitySim and the WFRC model are not incredibly different, and in fact many modes 

have a one-to-one match between the models. However, not all modes have an exact match 

between models. Table 3.4 shows the modes in each model grouped to allow consistency during 

calibration. 

ActivitySim additionally has ridehail modes, but the WF model does not, and therefore 

we do not have obvious calibration targets for ridehail. Based largely on the model results of Day 

(2022), we asserted the following mode shares for ridehail:  

• 0.015% for Home-Based Work trips 

• 0.38% for Home-Based Other trips 

• 0.4% for Non–Home-Based trips. 
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Table 3.4 Crosswalk of Modes in WF Model and ActivitySim 

Calibration Mode WF Mode(s) ActivitySim Mode(s) 

Drive Alone DA DRIVEALONEFREE 

Carpool (2) SR2 SHARED2FREE 

Carpool (3+) SR3p SHARED3FREE 

Walk walk WALK 

Bike bike BIKE 

Local Bus 
dBRT, dCOR, dLCL, 

wBRT, wCOR, wLCL 
WALK_LOC, DRIVE_LOC 

Commuter Rail dCRT, wCRT 
WALK_HVY, WALK_COM, 

DRIVE_HVY, DRIVE_COM 

Express Bus dEXP, wEXP WALK_EXP, DRIVE_EXP 

Light Rail dLRT, wLRT WALK_LRF, DRIVE_LRF 
 

 

Additionally, since the WF model has a significantly different mode split depending on 

the trip purpose, we calibrated each trip purpose individually. However, a crosswalk of trip 

purposes between the models is more complicated than the crosswalk for modes. Because ABMs 

create tours first, which are then populated with trips, an ABM’s idea of “trip purpose” is entirely 

different from that of a trip-based model. Specifically, an ABM does not have a concept of, for 

example, “home-based work” trips, there are simply trips on a “work” tour, some of which have 

an origin or destination at home. For simplicity, though, we converted the trips from ActivitySim 

into purposes that roughly match the WF model’s purposes. Any trip that doesn’t start or end at 

home is considered a Non–Home-Based trip, and if a trip starting or ending at home has its other 

end at work, it is considered a Home-Based Work trip. All other trips are considered Home-

Based Other trips. 

We calibrated the model by iteratively adjusting the alternative-specific constants (ASCs) 

in ActivitySim’s mode choice submodels. For each iteration, we compared the output mode split 
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of ActivitySim to the target WF model mode split, and we adjusted ActivitySim’s ASCs with the 

formula 

𝐴𝑘 = ln(𝑇𝑘/𝑀𝑘) 

where 𝐴𝑘 is the adjustment value for mode 𝑘,  

𝑇𝑘 is the target mode share of mode 𝑘, and  

𝑀𝑘 is the ActivitySim-predicted mode share of mode 𝑘.  

We added this adjustment value to the current ASCs in ActivitySim iteratively until calibration 

was satisfactory. 

There are two aspects of this calibration process worth noting. First, ActivitySim contains 

ASCs for both tour mode choice and trip mode choice, where the tour mode is the principal 

mode used on the tour, and the trip mode is the mode of the individual trip (for example, there 

could be a “walk” trip on a “transit” tour). Because tour-level mode choice influences trip mode 

choice, we adjusted both the tour-level and trip-level ASCs with the calculated adjustment value 

for each mode. Second, while it is possible to categorize ActivitySim trips into purposes similar 

to a trip-based model, ActivitySim does not do this conversion internally. ActivitySim does have 

separate ASCs by purpose, but these purposes are ActivitySim’s tour purposes, rather than 

purposes resembling those in a trip-based model. Though it is not a perfect correspondence to 

how we calculated the adjustment values, we adjusted the ASCs as follows: All ActivitySim “at 

work” ASCs are calibrated with the Non–Home-Based adjustment, all “work” ASCs are 

calibrated with the Home-Based Work adjustment, and all other ASCs are calibrated with the 

Home-Based Other adjustment. 

Figure 3.7 shows the mode split from ActivitySim compared against the target mode split 

for each calibration iteration. After a few iterations, the mode split more closely matches  
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Figure 3.7 Mode choice calibration, target (WF) vs. ActivitySim shares over several 

iterations. 

between the models; however, there are still some discrepancies. ActivitySim has mode choice 

ASCs separated not only by mode and purpose, but also by many personal variables, such as 

income, age, and vehicle ownership. We left the difference across these categories unchanged 

and adjusted all ASCs for a given mode and purpose equally. Our ActivitySim configuration is 

ultimately based on the San Francisco area, and so coefficients on variables such as travel time 

and income are calibrated for that area. Additionally, we did not calibrate the vehicle ownership 

model, and this may partly cause the discrepancies. 

In any case, we chose the calibration at iteration 4 for the final ASC values, as subsequent 

iterations adjusted the ASCs without changing the mode split very much. At subsequent 

iterations ActivitySim was also less sensitive to changes in infrastructure due to over-calibration, 

which would not allow for effective policy analysis. Table 3.5 compares the mode split of both 

models after iteration 4 of calibration. Overall, the calibration resulted in a reasonably similar 

mode split between the two models, though there are still discrepancies (for  
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Table 3.5 Comparison of Mode Split Between Models After Calibration 

Purpose Mode 
ActivitySim WF Model 

Trips Share Trips Share 

Home-Based Work 

Drive Alone 1012180 60.6% 1328609 77.6% 

Carpool 258459 15.5% 257783 15.1% 

Bus 171875 10.3% 18870 1.1% 

Rail 80193 4.8% 29847 1.7% 

Ridehail 1108 0.1% — —1 

Non-Motorized 145957 8.7% 76505 4.5% 

Home-Based Other 

Drive Alone 702594 18.2% 1394415 30.0% 

Carpool 2154115 55.8% 2702277 58.2% 

Bus 149217 3.9% 17717 0.4% 

Rail 127969 3.3% 19591 0.4% 

Ridehail 114278 3.0% — —1 

Non-Motorized 614901 15.9% 510144 11.0% 

Non–Home-Based 

Drive Alone 716885 36.3% 951561 39.9% 

Carpool 939668 47.6% 1273279 53.4% 

Bus 99000 5.0% 4888 0.2% 

Rail 21010 1.1% 8538 0.4% 

Ridehail 40283 2.0% — —1 

Non-Motorized 157006 8.0% 146404 6.1% 
1We asserted ridehail mode shares for mode choice calibration, but we did not include them 

here 
 

 

example, ActivitySim is predicting significantly more transit trips compared to the WF model). 

While the calibration is not perfect, for the purposes of this research, this calibration is 

determined to be reasonable enough. 

Figure 3.8 compares the trip-length frequency distribution of the two models by mode 

and purpose. Both ActivitySim and the WF model contain trip distribution steps which can be 

adjusted to affect the distribution of trip length. However, as the figure shows, the two models 

have similar trip-length frequency distributions, so no adjustment was necessary. The most 

significant discrepancies are with transit trips, again likely due to this ActivitySim configuration 
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being originally developed for San Francisco, making transit more attractive. Note that further 

calibration may be required to create a production-ready ActivitySim implementation, but again 

our focus is more on process than accuracy. We determined that ensuring the mode split and trip 

length distribution model outputs between models are fairly similar is sufficient for this research.  

The WF model has basic support for predicting remote work. This includes a lookup 

table of remote work percentages based on job type, year, and county. ActivitySim also has this 

functionality, and can additionally use individual- and household-level variables in its 

predictions. It is worth noting that both the WF model and ActivitySim make a distinction 

between “telecommuting” and “work from home,” where telecommute refers to an individual 

that commutes to work some days but not all and “work from home” (called “home-based jobs” 

in the WF model) means an individual’s workplace is always at their home. 

The ActivitySim implementation discussed in Macfarlane and Lant (2021) does not 

include any submodels related to remote work. However, a separate ActivitySim example 

implementation, developed for the Southeast Michigan Council of Governments’ metropolitan 

planning organization in Michigan, does include these submodels, and our ActivitySim 

implementation takes these submodels directly from the Michigan example. We made minor 

modifications to the remote work submodels to make the model compatible, but these 

modifications mostly involved ensuring the variable names from the remote work submodels 

were consistent with the existing ActivitySim implementation. 

Both models treat “work from home”/“home-based jobs” similarly. The WF model’s land 

use data contains employment by type in each TAZ, and it considers a “home-based job” as a 

separate job type, so these are not counted toward employment totals in trip generation and 
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subsequent steps. ActivitySim has a “work from home” submodel which assigns workers “work-

from-home” status based on personal variables such as income, gender, and education  

 
Figure 3.8 Comparison between models of trip-length frequency distribution 
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Table 3.6 Work-From-Home Submodel Choice Coefficients in ActivitySim 

Description Coefficient 

Constant for working from home 0.438 

Full-time worker (1 if true) -0.812 

Female worker -0.347 

Female worker with a preschool child in household 0.573 

Accessibility to workplaces of the home mgra -0.14 

Presence of non-working adult in the household -0.372 

Education level, Bachelors or higher degree 0.285 

Household income less than 30K -0.393 

Age Group - Less than 35 years -0.574 

Age Group - 35 yrs to 45 yrs 0 

Age Group - 45 yrs to 55 yrs 0.214 

Age Group - 55 yrs to 65 yrs 0.452 

Age Group - Older than 65 yrs 0.584 
 

 

(we left these variable coefficients unchanged from the existing configuration, see Table 3.6). 

There is also a “target work-from-home percent” value that adjusts the model to reach the 

specified work-from-home proportion of all workers. Individuals with work-from-home status 

are then prohibited from making a mandatory tour. This target work-from-home percentage is set 

at 2.3%, based on a weighted average from the WF model data. We made no other adjustments 

to the ActivitySim work-from-home submodel. 

However, the two models differ in their approach to telecommuting. The WF model has a 

lookup table of telecommuting shares based on job type, including predictions for future years. 

ActivitySim has a “telecommute frequency” submodel which assigns workers a telecommute 

status indicating the number of days they work remotely per week. Based on this status, 

ActivitySim adjusts the likelihood of selecting a mandatory DAP. Telecommute status depends 

on personal variables similar to those in the work-from-home submodel by default. 

Notably, the telecommute frequency submodel also includes adjustments based on an 
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Table 3.7 Telecommute Frequency Submodel Choice Coefficients in ActivitySim 

Description 
Telecommute Frequency Coefficients 

1 day 2–3 days 4 days 

Has children 0 to 5 years old 0 0 -0.864 

Has children 6 to 12 years old 0 0.517 -0.81 

One adult in household 0.177 0 -0.043 

Part-time worker 0 0.425 1.112 

College student 0 0.6 0 

Pays to park 0.457 0 0 

Income $60-100K 0.56 0.389 0 

Income $100-150K 0.644 0.193 0 

Income $150K+ 0.92 0.765 0 

0 autos 0 0.407 0 

3+ autos 0 -0.73 0 

Distance to work 0.016 0 0 
 

 

individual’s distance to work. We did not make any other changes to the existing variables in this 

submodel, and Table 3.7 shows the submodel coefficients. 

To calibrate ActivitySim’s telecommute frequency submodel to the WF data, shown in 

Table 3.8, we added additional job type variables to ActivitySim. Because these are choice 

coefficients rather than target percentages, we calibrated these values to match the WF targets. 

The calibration allowed ActivitySim to match these targets exactly, as shown in Table 3.8. 

Because both remote-work submodels in ActivitySim run before choosing an individual’s 

DAP, ActivitySim can model a “rebound effect,” where individuals working remotely on any 

given day may be more likely to make discretionary tours. However, because the WF model does 

not include this effect, we left the ActivitySim DAP model unchanged. Table 3.9 shows the 

coefficients of the DAP model for individuals who work remotely. 
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Table 3.8 Telecommute Rates and Coefficients by Job Industry 

Industry 
2019 WFRC 

Telecommute % 

Telecommute Frequency Coefficients 

1 day 2–3 days 4 days 

Retail 2.70% 0.312 0.125 0.078 

Food 1.87% -0.368 -0.148 -0.092 

Manufacturing 2.02% 0.038 0.015 0.01 

Office 6.66% 1.782 0.712 0.445 

Gov’t/Education 1.67% -0.56 -0.224 -0.14 

Health 2.86% 0.158 0.063 0.039 

Agriculture 6.93% 2.262 0.904 0.566 

Mining 0.53% -2.03 -0.81 -0.511 

Construction 3.28% 0.816 0.326 0.204 

Other 5.37% 1.535 0.614 0.384 
 

 

Table 3.9 Daily Activity Pattern Submodel Coefficients in ActivitySim 

Status 
Mandatory 

DAP 

Non-Mandatory 

DAP 
Home DAP 

Telecommutes 1 day per week 0 0.526 0.496 

Telecommutes 2-3 days per week 0 1.387 1.584 

Telecommutes 4 days per week 0 1.848 1.711 

Full-time worker, works from home -999 0 0 

Part-time worker, works from home -999 0 0 
 

 

3.4 Example Scenarios 

With these two calibrated models, we created three model scenarios to implement and 

compare processes. This is not a comprehensive list covering all potential scenario possibilities, 

but the scenarios identified intend to represent the main goals of travel demand modeling in 

representing changes in travel behavior. Change in travel behavior could arise in response to 

changes in land use, transportation infrastructure, and social/economic factors, so we created 

three hypothetical model scenarios to implement one of these aspects. 
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The first scenario involves a change in land use near the former state prison site in 

Draper, Utah. Current plans for this site involve a new development known as “The Point,” 

which will add high-density housing and commercial development to the area. This research 

scenario will be based on this development, but will include only the land use changes. The 

actual development plans also include expansion of transit, but this will not be a part of this 

scenario. 

The second scenario centers around a change in transportation infrastructure, namely an 

augmentation of commuter rail service along the Wasatch Front. The FrontRunner, a commuter 

rail line connecting Provo to Ogden, is slated for expansion. The expansion includes additional 

stations and increased travel speeds due to vehicle electrification. This scenario models these 

changes in accordance with the planned expansion of the service. 

The third scenario addresses the growing trend of remote work. Given technological 

advancements and the notable surge in remote work during the COVID-19 pandemic, this 

scenario models a substantial increase in remote work based on projections from WF. 

Each of these scenarios is based on the 2019 baseline scenario in the respective model, 

and ignores any additional expected growth or development beyond the specific changes of each 

scenario. For example, the “Remote Work” scenario in Chapter 6 uses remote work projections 

for 2050, but land use and socioeconomic data from 2019. These scenarios are therefore not 

realistic, but they serve as illustrative examples of the types of planning and development 

scenarios agencies may wish to analyze. 

All three of these scenarios are coded in both the WFRC model and ActivitySim. The 

results (Chapters 4–6) describe the process of implementing and analyzing each scenario, as well 

as the analyses themselves. 
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4.0 SCENARIO 1: CHANGE IN LAND USE 

Changes in land use is one of the primary ways to affect travel behavior. Such changes 

involve the addition or removal of households and/or jobs in an area, and our first model 

scenario, termed the “Land Use” scenario, addresses this aspect of travel demand modeling by 

simulating a new development in a single area. The basis for the Land Use scenario is the 

redevelopment of a defunct prison site near Draper, Utah. This redevelopment is part of the 

actual plan for the area, and the new development is known as The Point (Point of the Mountain 

State Land Authority and Skidmore, Owings & Merrill, 2021). 

This scenario models the change in transportation behavior that a development such as 

The Point would create. Though the actual development plans for The Point include an 

expansion of transit services (Point of the Mountain State Land Authority and Skidmore, Owings 

& Merrill, 2021), this scenario only represents the additional households and jobs created from 

this development. The data for the land use changes comes from the WF land use forecast, which 

is based on projections from the Point of the Mountain State Land Authority (Point of the 

Mountain State Land Authority and Skidmore, Owings & Merrill, 2021).  

The site for this scenario consists of five TAZs. Table 4.1 shows the households, 

population, and employment by type of these TAZs in the baseline scenario, and Table 4.2 shows 

this information with the new land use. Notably, there were no households and relatively few 

jobs in these TAZs in the baseline scenario. No changes other than to the land use/socioeconomic 

data in these five TAZs were made relative to the baseline scenario. 
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Table 4.1 TAZ-Level Socioeconomic Data for The Point (Baseline Scenario) 

TAZ Households Population 
Employment 

Retail Industrial Other Total 

2138 0 0 0 0 0 0 

2140 0 0 0 0 0 0 

2141 0 0 0 0 277 277 

2149 0 0 0 0 796 796 

2170 0 0 3 359 71 433 
 

  

Table 4.2 TAZ-Level Socioeconomic Data for The Point (Land Use Scenario) 

TAZ Households Population 
Employment 

Retail Industrial Other Total 

2138 7431 17811 4 0 76 80 

2140 0 0 610 4 7390 8004 

2141 0 0 1449 0 5363 6812 

2149 0 0 962 2 7372 8336 

2170 0 0 7 357 106 471 
 

 

4.1 Scenario Creation 

This scenario is simple to implement in the WF model. This model uses the land 

use/socioeconomic data directly, so we only needed to replace the data for the specific TAZs 

with the 2050 forecasted data. All other TAZs have the same land use data as in the 2019 

baseline scenario. 

ActivitySim requires two changes for this scenario. The first is to update to the TAZ-

level land use and socioeconomic data, which is identical to the process for the WF model. The 

second is to update the synthetic population. To keep consistency between model scenarios, we 

created a new population for only the five affected TAZs and joined it to the existing synthetic 

population. The affected zones did not have individuals or households in the existing synthetic 
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population, so we did not need to remove individuals or households before joining the two 

populations. 

Creating the new synthetic population followed a similar process as in the baseline 

scenario in Section 3.2, but used the new land use data as the TAZ-level controls. Many of the 

controls for PopulationSim use tract-level data from the Census, but existing Census data for The 

Point site is unrepresentative of the new development, as currently the site lacks residential and 

economic activity. Because of this, we used a Census tract covering part of downtown Salt Lake 

City to represent the new development patterns at The Point. Therefore, the income distribution, 

etc. of The Point site will match the downtown Salt Lake City income distribution, etc., though 

the TAZ-level controls and land use/socioeconomic data in the area will match the WF 

projections for 2050. 

In a more realistic case, a transportation agency would forecast land use and 

socioeconomic data to use as controls to PopulationSim, rather than using a separate Census tract 

to represent new development. However, our ActivitySim implementation only needs to be 

within a rough approximation of the WF model for the purposes of this project, and the method 

used here results in reasonable accuracy between the models. Additionally, we designed our 

ActivitySim implementation to be independent from the WF model where feasible. 

4.2 Scenario Analysis 

There are several kinds of analyses an agency likely would want to do in assessing the 

effects of a land use change. Chief among them would be an analysis of the new trips resulting 

from the development. These analyses could include the number of trips, the distance traveled, 

and where the trips are made. 



 51 

Both model types allow for very easy analysis of trip numbers and lengths, as the WF 

model outputs origin-destination trip tables directly by mode and purpose, and ActivitySim 

outputs a list of trips containing information on origin, destination, and mode. Figure 4.1 and 

Figure 4.2, for example, show the new trip-miles produced in the updated zones for the WF 

model and ActivitySim, respectively. It is important to note that there is a crucial difference 

between the model types: how the trips that do not begin or end at the home are treated. 

In the WF model (and in many trip-based models), zones with households produce trips with 

different trip purposes, including Home-Based Work, Home-Based Other, and Non–Home-

Based trips. “Home-based” trips have an origin or destination at the home, and are fairly 

straightforward to model, as the destination choice step can take for granted that these trips have 

one trip end in the zone that produced them. In addition to home-based trips, though, individuals 

make many “non–home-based” trips, which do not have an origin or destination at the home 

(e.g., traveling from work to a grocery store). Non–home-based trips can be a significant portion 

of total travel, as Figure 4.2 shows, but are not as straightforward to model as home-based trips. 

Because non–home-based trips by definition have neither an origin or destination at the 

home (where trips are produced in the trip generation step), these trips happen exclusively 

between zones that did not produce them. Therefore, it is difficult to know how best to 

redistribute non–home-based trips in trip-based models, as they could in reality have any number 

of origins and/or destinations. Though modeling the destinations for non–home-based trips could 

be done via a similar process to that of home-based trips, the origins of these trips need to be 

modeled as well. There are several methods to redistribute non–home-based trips in trip-based 

models. One approach is to assign non–home-based trip origins in a similar manner to trip 

destinations as part of the trip distribution step, either with a gravity model or some distance- 
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Figure 4.1 Trip-miles produced in updated zones in the Land Use scenario (WF model). 

 
Figure 4.2 Trip-miles of individuals living in the updated zones (ActivitySim). Many of 

these trips do not have an origin or destination in the home zone of the individual. 
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decay function. The model can then represent the destinations of these non–home-based trips as 

if they were any other trip. This results in non–home-based trips that are more likely to have both 

an origin and destination relatively near to the home. The WF model takes a different approach: 

Non–home-based trip ends have a production model and an attraction model. In the trip 

generation step, households produce non–home-based trips similarly to any other trip purpose. 

However, the trips produced in this step determine only the quantity of non–home-based trips, 

not the trip ends. The distribution of non–home-based trips is determined by a trip attraction 

model, largely based on TAZ employment. Then the model globally scales this distribution to 

match the total quantity of non–home-based trips produced in the trip generation step. 

By contrast, an ABM models individuals and their travel explicitly, and this makes the 

treatment of non–home-based trips much more straightforward. Each trip is tied to a specific 

individual with a defined home location, and so no extra “redistribution” step is needed to model 

or analyze non–home-based trips: These are “built-in” to each individual’s tour pattern. In fact, 

as Figure 4.3 shows, non–home-based trips can occur as part of any tour type/purpose; there is 

no separate “non–home-based” purpose in ActivitySim. Note that Figure 4.3 counts person-miles 

by tour purpose, using the purposes as defined in ActivitySim, rather than converting the 

ActivitySim trips to the “common” trip purposes as discussed in Section 3.3.2. 

In addition to looking at total person-miles traveled, it is also useful to analyze the origins 

and destinations of the new trips. One common way to visualize trip origins and destinations is 

with desire lines, which show lines for each trip origin/destination pair. The thickness of the line 

represents the number of trips between the pair of zones. 

Figure 4.4 shows a desire line plot by mode of all home-based trips produced in the new 

development zones in the WF model. This figure is in line with our expectation: non-motorized 
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trips are quite short, transit trips are exclusively to downtown areas, and many drive-alone and 

carpool trips are made with varying lengths. Figure 4.4 also shows a similar mode split to 

Figure 4.2. Although the former depicts the number of trips and the latter depicts trip distance, 

there is a rough correlation between trip count and miles traveled, so it is not surprising that the 

mode split is similar between the figures. There is difficulty in analyzing the non–home-based 

trips, however. Typically, in a trip-based model, once non–home-based trips are assigned trip 

ends, they have no connection to the homes/zones that produced them, and are treated as 

“belonging” to either the origin or destination zone. Because of this, it is not possible to simply 

filter trips by origin or destination as can be done with the home-based trips. Instead, we took the 

difference between the entire non–home-based trip matrices in both this scenario and the 

baseline scenario. 

Figure 4.5 shows the desire line plot for the difference in non–home-based trips between 

this scenario and the baseline scenario. Two things are immediately noticeable from this plot. 

The first observation is that many pairs of zones saw a decrease in non–home-based trips 

between them compared to the baseline scenario (i.e., there were more non–home-based trips in 

the baseline scenario between these zones). Certainly, it makes little sense to predict fewer trips 

as the result of added population and employment. However, this is in fact not an overall 

decrease in non–home-based trips; these trips are simply being assigned trip ends in different 

locations due to the nearby change in land use. The second observation is that the largest 

increases in non–home-based trips include an origin or destination in the new development (the 

home zones of the new population). Because the change in employment was much more 

significant than the change in population (see Tables 4.1 and 4.2), many more non–home-based 

trip ends were attracted to the development zones compared to the relatively little global increase 
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in non–home-based trips due to the increase in population. The model includes both effects (the 

global increase in and the changed distribution of non–home-based trips), but the two effects are 

impossible to separate. 

As previously mentioned, an ABM allows tracking individuals explicitly, and so 

analyzing non–home-based trips is much more straightforward. Figure 4.5 shows desire lines of 

all trips made by individuals living in the new development zones for ActivitySim. Non–home-

based trips are colored differently from home-based trips. 

In an ABM, non–home-based trips are directly connected to their place of production, as 

each trip is linked to a specific individual who has a defined home location.  The individual 

nature of an ABM avoids entirely the problems trip-based models have with non–home-based 

trips. In a complicated land use forecast, an analyst can analyze each development’s full 

contribution to network congestion individually. 
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Figure 4.3 Desire lines of home-based trips produced in the new development in the WF model, by mode. 
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Figure 4.4 Desire lines of non–home-based trips made in the WF model, by mode. 
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Figure 4.5 Desire lines of trips made in ActivitySim by mode. 
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5.0 SCENARIO 2: IMPROVED TRANSIT SERVICE 

Our second scenario models travel behavior changes because of changes to transportation 

infrastructure.3 This model scenario, termed the “Transit” scenario, is based on a planned 

improvement to the FrontRunner commuter rail line. FrontRunner runs along the Wasatch Front 

between Provo and Ogden, Utah, with several stops in between. Currently, there is only one set 

of tracks for much of the line, and it is only possible for trains to pass each other near stations. 

Because of this, headways are quite large, with trains running every 30 minutes in peak periods 

and every 60 minutes in off-peak periods. 

A potential improvement to FrontRunner would “double track” the entire route, allowing 

trains to pass each other at any point. The main benefit of this improvement is a substantial 

decrease in headways, bringing them to 15 and 30 minutes for peak and off-peak service, 

respectively. Two additional improvements are partial electrification of FrontRunner, allowing 

for faster travel speeds, and extending the track farther south with additional stops. 

The Transit scenario models these improvements to FrontRunner. The scenario adjusts 

the headways to 15/30 minutes for peak/off-peak service, increases travel speeds, and adds 

additional stops in Vineyard4, Springville, Spanish Fork, and Payson. Figure 5.1 shows the 

FrontRunner network along with the modeled changes. There would be additional transit 

improvements, such as a revised bus service network serving the Springville station, but for the  

                                                 

3 Though this scenario models transit, the findings will apply to a change in level of service for any transport mode. 

4 In 2019, the model year for the baseline scenario, the Vineyard station was not yet open, though the station has 

been operational since late 2022. 
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Figure 5.1 Map of the FrontRunner commuter rail line. 
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sake of simplicity, we did not include these additional improvements in this model scenario; we 

only model the changes to the FrontRunner service. 

5.1 Scenario Creation 

In the WF model, this scenario is relatively easy to implement. The input data stores the 

headways and we can easily modify them, and the model already includes a 2050 network with 

increased speeds and additional stations for future-year analysis. The only additional change 

needed was to turn on the “park-and-ride” flag in the highway network at the node of each new 

station, which allows transfers between auto and transit modes at these nodes. 

To implement this scenario in ActivitySim, we only needed updated travel skims. As in 

the baseline scenario, ActivitySim directly uses the WF model’s network assignment transit 

skims output in this model scenario. Because the mode share of transit is relatively low, we do 

not expect the change to affect the highway travel times very much. Therefore, we took the WF 

model baseline-scenario highway skims to use in ActivitySim, and we did not update them for 

this scenario. No other changes to ActivitySim are necessary to model this scenario. 

5.2 Scenario Analysis 

One of the most straightforward analyses to perform is a comparison of the mode split 

between this and the baseline scenario. Table 5.1 shows the number of trips by purpose and 

mode for each model, and compares these results between this scenario and the baseline 

scenario. Unsurprisingly, both models predict a significant increase in commuter rail trips. The 

models differ, however, in which modes the new commuter rail trips come from.
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Table 5.1 Change in Mode Split with Improved Transit 

Purpose Mode 
WF Model ActivitySim 

Baseline Trips Transit¹ Trips Change Baseline Trips Transit¹ Trips Change 

Home-

Based 

Work 

Drive Alone 1,328,609 1,326,191 -0.2% 1,012,180 1,010,565 -0.2% 

Carpool 257,783 256,654 -0.4% 258,459 256,550 -0.7% 

Local Transit 37,935 36,494 -3.8% 232,222 233,426 0.5% 

Commuter Rail 10,821 15,891 46.9% 19,846 22,265 12.2% 

Ridehail — — — 1,108 1,099 -0.8% 

Non-Motorized 76,506 76,396 -0.1% 145,957 145,845 -0.1% 

Home-

Based 

Other 

Drive Alone 1,394,415 1,394,095 0.0% 700,133 698,809 -0.2% 

Carpool 2,702,277 2,701,039 0.0% 2,148,429 2,145,135 -0.2% 

Local Transit 33,168 32,583 -1.8% 195,062 194,649 -0.2% 

Commuter Rail 4,180 6,332 51.5% 81,094 87,337 7.7% 

Ridehail — — — 113,624 113,538 -0.1% 

Non-Motorized 510,143 510,103 0.0% 613,134 611,996 -0.2% 

Non–

Home-

Based 

Drive Alone 951,561 951,407 0.0% 716,143 714,854 -0.2% 

Carpool 1,273,279 1,272,977 0.0% 938,056 936,408 -0.2% 

Local Transit 12,213 12,068 -1.2% 107,526 108,395 0.8% 

Commuter Rail 1,243 1,806 45.3% 12,317 13,344 8.3% 

Ridehail — — — 40,092 40,061 -0.1% 

Non-Motorized 14,6404 146,409 0.0% 156,819 156,587 -0.1% 
 

1“Transit” refers to the Transit scenario, not the mode of travel 
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For Home-Based Other and Non–Home-Based trips, the WF model shows virtually no 

change in the number of auto and non-motorized trips, while there is a more significant decrease 

in the number of local transit trips. Home-Based Work trips do see a decrease in auto trips with 

the improved transit, but there are still significantly fewer local transit trips compared to the 

baseline scenario. This indicates that the new commuter rail trips are mostly coming from those 

who would have taken local transit in the baseline scenario. 

ActivitySim, on the other hand, shows an increase in local transit trips for Home-Based 

Work and Non–Home-Based trips. For Home-Based Other trips, there is a decrease in local 

transit, but by percentage it is not nearly as significant as the decrease in the WFRC model.5 This 

shows that most new commuter rail trips in ActivitySim are coming from auto (drive-alone and 

carpool) modes, rather than other transit modes. 

The discrepancy may be partially explained by the difference in the way trips are 

modeled. In the WF model, trips are modeled in aggregate, with no interaction between separate 

trips. Regardless of trip purpose, trips are treated essentially the same, though potentially with 

different coefficients in mode choice equations. ActivitySim, however, does model interactions 

between trips. An individual who makes a commuter rail trip will (usually) not be able to drive 

for subsequent trips until they have returned home. Because of this, individuals taking commuter 

rail are more likely to then take other forms of transit on the same tour.  

One particularly interesting analysis that can be done with an ABM is to see who 

changed modes with the improved transit. Because trips are modeled individually rather than in 

                                                 

5 The absolute difference in number of Home-Based Other local transit trips between the scenarios is comparable 

between the two models, but since ActivitySim is predicting significantly more transit trips in the baseline scenario 

compared to the WFRC model, the percent change is much smaller in ActivitySim. 
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aggregate, it is possible to identify trips that switch modes between the scenarios. Figure 5.2 

shows the distribution of these “switched” trips. These are trips that are “the same” between 

scenarios and differ only by mode. For the purposes of this analysis, trips are considered “the 

same” between scenarios if they are made by the same person and have the same origin and 

destination zones, time of day6, and tour and trip purpose. Most of these trips also share the same 

mode, which is to be expected, but many do not. Figure 5.2 is filtered to show only trips that do 

not share the same mode between scenarios. 

There is some amount of randomness in the way ActivitySim determines trip modes, 

though. This randomness is seen partly in trips that switch away from commuter rail despite the 

improved commuter rail service, as well as some trips that switch to modes other than commuter 

rail, especially to drive alone. Although, part of the switch from carpool to drive alone can be 

explained as previously carpool trips where all but one vehicle occupant switched to another 

mode, leaving one person in the vehicle for the trip. Overall, though, the randomness is not a 

significant portion of the overall mode switching seen in Figure 5.2. 

However, the improved transit service did not only affect the mode choice in 

ActivitySim. In fact, there are many trips that do not have a match between scenarios, where 

origin, destination, time of day and/or purpose differ. The number of trips an individual makes 

may also differ between scenarios, as each person’s DAP is partially dependent on accessibility 

measures (see Figure 3.2). Notably, Figure 5.2 also does not include any of these trips; the figure 

only shows trips which do have a match between scenarios. 

                                                 

6 ActivitySim models time of day as the “departure hour” for each trip. If two trips share the same departure hour, 

they are considered here to have happened at the same time. 
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Figure 5.2 Trip modes of individuals who switched modes with improved commuter rail service. 
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ABMs also allow for even more granular analysis than shown in Figure 5.2. For example, 

Figure 5.3 shows the trip modes of at-work subtours made by individuals who switched their 

work tour mode away from drive-alone. The figure shows the at-work subtour trip modes for all 

these individuals, not just those who also switched their at-work subtour trip modes. These 

results are as expected. All trips that were drive-alone in the baseline scenario switched to 

carpool, and there was virtually no mode switching otherwise, except a few trips that switched 

from carpool to non-motorized. This switching from carpool to non-motorized can again be 

largely explained by the randomness in ActivitySim’s mode choice models, and again is 

relatively insignificant. 

 
Figure 5.3 At-work subtour trip modes of individuals who switched their work mode 

away from “Drive-Alone” in ActivitySim. 
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Table 5.2 Example Socioeconomic Analysis of Transit Trips (WF Model) 

Purpose Mode Trips 
TAZ-Level Median (weighted by trips) 

Households Population Jobs Income 

Home-Based 

Work 

Local Transit 36,494 478 1,211 400 $54,208 

Commuter Rail 15,891 435 1,368 279 $76,529 

Home-Based 

Other 

Local Transit 32,583 460 1,147 454 $49,682 

Commuter Rail 6,332 423 1,306 317 $68,369 

Non–Home-

Based 

Local Transit 12,068 97 182 1362 $50,921 

Commuter Rail 1,806 138 453 1487 $58,576 
 

 

Both model types additionally allow for analyzing the types of people who use transit. 

The WF model, however, is limited to analyses using aggregate, TAZ-level data. Table 5.2 

shows, for example, the median number of households, people, and jobs per TAZ weighted by 

the number of transit trip productions in each TAZ for the WF model. Additionally, Table 5.2 

shows a median income associated with transit trips, but note that this is not a median income of 

transit riders, but a median of TAZ median income, weighted by trip productions. It is difficult to 

know the actual income distribution of transit riders since individuals are not modeled explicitly. 

Because an ABM does model individuals explicitly, we can access information about 

each individual at every stage of the model, including in post-hoc analysis. We can therefore 

determine the individual-level distribution of age and income for transit riders, for example. 

Table 5.3 shows a similar summary as Table 5.2, but for ActivitySim. Table 5.3 presents median 

values for the individuals who made transit trips, not simply TAZ averages. Notably, Tables 5.2 

and 5.3 show that ActivitySim is predicting a higher median income of transit riders than the WF 

model. Our synthetic population does overpredict high-income households along the length of 

FrontRunner (see Figure 3.5), and this may partially be the cause of the discrepancy. 

 



  68 

Table 5.3 Example Socioeconomic Analysis of Transit Trips (ActivitySim) 

Purpose Mode Trips 
Individual-Level Median 

Income Age Distance to work (mi) 

Home-Based 

Work 

Local Transit 233426 $78,735  37 7.4 

Commuter Rail 22265 $85,314  33 24.3 

Home-Based 

Other 

Local Transit 194649 $58,408  28 4.9 

Commuter Rail 87337 $68,603  23 3.8 

Non–Home-

Based 

Local Transit 108395 $63,718  33 6.2 

Commuter Rail 13344 $58,408  25 3.9 
 

 

Additionally, Figure 5.4 shows the income distribution of transit riders for the WF model 

and ActivitySim. Again, the WF model is not modeling individuals, so for the WF model 

Figure 5.4 shows the distribution of median TAZ income weighted by number of trip 

productions. For ActivitySim, however, the figure shows the true income distribution of 

individual transit riders. 

ActivitySim shows a rather wide income distribution of transit riders, while the 

distribution of the WF model is much denser around $50,000–$75,000. This makes sense given 

that the WF model shows a distribution of median incomes, while ActivitySim shows the 

distribution of individual incomes. It is clear that ActivitySim considers transit to be more 

attractive for a wider range of incomes than the overall income distribution, though notably low- 

to medium-income individuals are somewhat more likely to take transit. However, the income 

distribution of individuals taking transit in the WF model is unknown. 
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Figure 5.4 Income distribution of transit riders in both models. We used the distribution 

of production TAZ median income weighted by transit trips for the WF model, while we 

used the actual income distribution of transit riders for ActivitySim. 
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6.0 SCENARIO 3: INCREASE IN REMOTE WORK 

Our final model scenario, termed the “Remote Work” scenario, addresses changes in 

travel behavior as a result of social and/or economic factors. Specifically, we represent an 

increase in remote work rates since the COVID-19 pandemic. With the onset of the COVID-19 

pandemic, there were unprecedented numbers of people working remotely (Bick et al., 2021). 

Though remote work is currently not as common as during the pandemic, remote work rates are 

increasing each year and are predicted to continue to rise (Ozimek, 2020). 

As noted in Section 3.3.2, both models make a distinction between “working from home” 

(no work location other than home) and “telecommuting” (working remotely some but not all 

days). The WF model contains a lookup table of both work-from-home (called “home-based 

jobs” in the WF model) and telecommute percentages by job type and year, and predicts an 

increase in both remote work rates over time. Figure 6.1 shows the remote work rates predicted 

in the WF model by year. 

This scenario is a “what-if” analysis that models a significant increase in remote work 

rates. We use the 2050 remote work rates from the WF model, but make no other changes from 

the baseline scenario. In other words, this scenario models the 2050 predicted remote work rates 

with the 2019 land use and infrastructure. 

There has been much research, especially in recent years, on the implications of remote 

work. While many agencies have adjusted their models to account for remote work, and most 

models follow similar principles, it is not obvious what the best method is. Bramberga (2023) 

even suggests that considerations for remote work should be made on a case-by-case basis 

because there is no single best approach. The following section discusses some of these 

considerations. 
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Figure 6.1 WF model remote work rates. 

6.1 Considerations for Modeling Remote Work 

Increasing remote work rates may affect several aspects of travel behavior. The most 

obvious effect is that people will on average make fewer work trips, and this effect will vary by 

job type (Yasenov, 2020). Most travel demand models include a decrease in work trips based on 

remote work rates and job type (Bramberga, 2023; Moeckel, 2017; Sener and Bhat, 2011). 

While work trips decrease with an increase in remote work, Kim (2017) discusses a 

“rebound effect,” where individuals make more discretionary trips on days they do not commute 

to work. Moreno and Moeckel (2016) similarly discuss the idea of a “travel time budget,” where 

a decrease in trips of one purpose will increase the time people allocate for trips of another 

purpose and vice versa. 

This rebound effect is not straightforward, however. Elldér (2020), for example, finds 

that distinguishing between people that work from home all day and those who work from home 
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only part of the day might make a difference. Compared to those who commute to work, those 

who worked from home the entire day had fewer trips and miles traveled, but those who worked 

from home only part of the day had more trips and miles traveled. 

Additionally, the types of trips people make can differ depending on remote work status. 

While the rebound effect proposes that the number of trips may increase on remote work days 

(He and Hu, 2015), Mokhtarian and Varma (1998) find a decrease in vehicle miles traveled for 

both work and discretionary trips on remote work days. This implies that longer trips are being 

replaced by shorter trips on days people do not travel to work. Moeckel (2017) additionally finds 

that those who travel to their job site less frequently are more likely to live further away from 

their job site, and so their longer but infrequent commute is dropped on remote work days, 

perhaps in favor of shorter, discretionary trips. 

In our case, we are using the existing frameworks for modeling remote work in both 

ActivitySim and the WF model, as discussed in Section 3.3.2. 

6.2 Scenario Creation 

We need to make two changes in the WF model for this scenario. The first is to replace 

the 2019 estimates for work from home and telecommuting with the 2050 estimates. Table 6.1 

shows both the original and updated estimates. The second change is to the TAZ-level 

socioeconomic data. The WF model estimates a number of home-based jobs in each TAZ, so we 

replaced the original 2019 home-based job estimates with the 2050 estimates. The WF model 

additionally includes a global scaling factor for all remote work percentages. However, we left 

this scaling factor unchanged, as we considered that the 2050 predicted remote work percentages 

would better model a more realistic increase in remote work than simply scaling the 2019 rates 

globally. 
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Figure 6.2 Comparison of remote work rates in the WF model by year and industry. 

We adjusted the remote work models in ActivitySim using the same process as in 

Section 3.3.2, but with the 2050 targets from the WF model. We changed the “target work-from-

home percent” value in ActivitySim’s work-from-home submodel to 3.5% based on a weighted 

average from the 2050 WF data, and we calibrated the job type coefficients in the telecommute 

frequency submodel to match the WF target telecommute shares by job type. Figure 6.2 shows 

the WF 2050 telecommute percentages with the ActivitySim telecommute utility coefficients. As 

in the baseline scenario, this calibration allowed ActivitySim to match the WF telecommute 

percentages exactly. ActivitySim on the other hand does account for this, in that individuals 

working remotely on any given day may be more likely to make discretionary tours, as discussed 

in Section 6.1 above. Table 6.3 shows this as well, where ActivitySim predicts a noticeable 

increase in home-based other trips as well as a decrease in work trips. 

 

.
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Table 6.1 Change in Mode Split After Increased Remote Work Rates 

 WF Model Trips ActivitySim Trips 

Purpose Mode Baseline 
Remote Work 

Scenario 
Change Baseline 

Remote Work 

Scenario 
Change 

Home-Based 

Work 
Drive Alone 1,328,609 1,244,451 -6.3% 1,012,180 950,306 -6.1% 

 Carpool 257,805 238,669 -7.4% 258,459 242,497 -6.2% 

 Transit 48,752 44,977 -7.7% 253,176 237,881 -6.0% 

 Non-Motorized 76,506 71,063 -7.1% 145,957 137,684 -5.7% 

Home-

Based 

Other 

Drive Alone 1,394,415 1,395,196 0.1% 700,133 709,957 1.4% 

Carpool 2,702,272 2,702,625 0.0% 2,148,429 2,171,566 1.1% 

Transit 37,346 37,359 0.0% 389,780 396,815 1.8% 

Non-Motorized 510,143 508,869 -0.2% 613,134 617,480 0.7% 

Non–

Home-

Based 

Drive Alone 95,1561 938,653 -1.4% 716,143 687,935 -3.9% 

Carpool 1,273,317 1,254,548 -1.5% 938,056 922,662 -1.6% 

Transit 13,453 13,199 -1.9% 159,935 158,366 -1.0% 

Non-Motorized 146,404 144,126 -1.6% 156,819 152,688 -2.6% 
 



  75 

Table 6.2 Telecommute Rates and Coefficients by Job Industry 

Industry 
2050 WF 

Telecommute % 

Telecommute Frequency Coefficients 

1 day 2–3 days 4 days 

Retail 7.25% 2.021 0.809 0.505 

Food 5.03% 1.376 0.551 0.344 

Manufacturing 5.45% 1.636 0.655 0.408 

Office 18.01% 4.792 1.916 1.197 

Gov’t/Education 4.56% 1.199 0.48 0.301 

Health 7.21% 1.929 0.771 0.482 

Agriculture 16.83% 4.764 1.906 1.191 

Mining 1.43% -0.694 -0.277 -0.174 

Construction 8.82% 2.544 1.018 0.637 

Other 14.58% 3.804 1.521 0.951 
 

  

In addition to the number of trips, increasing remote work rates can also influence the 

length of trips made. The WF model does not consider trip length when adjusting trip rates due 

to remote work. There is perhaps an implicit consideration in that remote work rates differ by job 

type and some job types are concentrated in certain areas, but there is no reference to trip length 

explicitly. Table 6.4 illustrates this, where, for example, Home-Based Work drive-alone trips 

decreased by 6.3% relative to the baseline scenario, but person-miles traveled decreased only by 

5.3%. This shows that in fact the shorter work trips are being made less frequently with 

increased remote work rates, though notably this is only a side-effect of the WF model design.  

ActivitySim does model distance to work directly when predicting remote work status 

(see Section 3.3.2 and Table 3.7), so those who live farther away from their job site are more 

likely to work remotely. ActivitySim, therefore, predicts a greater decrease in person-miles than 

in number of trips for Home-Based Work trips, as seen in Table 6.5. This discrepancy is not 

especially large, showing that ActivitySim is not considering the trip distance too heavily (see 

Table 3.9), but the discrepancy is consistent across all modes. Additionally, for Home-Based 
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Other trips, ActivitySim predicts a greater increase in the number of trips than in person-miles, 

which shows that ActivitySim is modeling the effects found by Moreno and Moeckel (2017) and 

Moeckel (2017), where longer work trips are being exchanged for shorter discretionary trips.  
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Table 6.3 Comparison of Trips Taken and Miles Traveled (WF Model) 

Purpose Mode 

Trips Person-Miles 

Baseline 
Remote Work 

Scenario 
Change Baseline 

Remote Work 

Scenario 
Change 

Home-Based Work 

Drive Alone 1,328,609 1,244,451 -6.3% 12,736,970 12,070,213 -5.2% 

Carpool 257,805 238,669 -7.4% 3,204,552 2,945,150 -8.1% 

Transit 48,752 44,977 -7.7% 547,804 500,953 -8.6% 

Non-Motorized 76,506 71,063 -7.1% 132,216 122,930 -7.0% 

Home-Based Other 

Drive Alone 1,394,415 1,395,196 0.1% 6,088,804 6,122,517 0.6% 

Carpool 2,702,272 2,702,625 0.0% 13,420,596 13,448,784 0.2% 

Transit 37,346 37,359 0.0% 264,203 264,432 0.1% 

Non-Motorized 510,143 508,869 -0.2% 591,297 590,349 -0.2% 

Non–Home-Based 

Drive Alone 951,561 938,653 -1.4% 4,777,297 4,736,979 -0.8% 

Carpool 1,273,317 1,254,548 -1.5% 7,650,625 7,538,596 -1.5% 

Transit 13,453 13,199 -1.9% 73,563 72,018 -2.1% 

Non-Motorized 146,404 144,126 -1.6% 136,914 134,784 -1.6% 
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Table 6.4 Comparison of Trips Taken and Miles Traveled (ActivitySim) 

Purpose Mode 

Trips Person-Miles 

Baseline 
Remote Work 

Scenario 
Change Baseline 

Remote Work 

Scenario 
Change 

Home-Based Work 

Drive Alone 1,012,180 950,306 -6.1% 9,632,251 9,021,681 -6.3% 

Carpool 258,459 242,497 -6.2% 2,631,886 2,463,552 -6.4% 

Transit 253,176 237,881 -6.0% 2,911,616 2,728,897 -6.3% 

Non-Motorized 145,957 137,684 -5.7% 353,246 332,978 -5.7% 

Home-Based Other 

Drive Alone 700,133 709,957 1.4% 4,280,006 4,332,319 1.2% 

Carpool 2,148,429 2,171,566 1.1% 11,498,994 1,1624,928 1.1% 

Transit 389,780 396,815 1.8% 3,547,052 3,583,630 1.0% 

Non-Motorized 613,134 617,480 0.7% 1,090,176 1,098,043 0.7% 

Non–Home-Based 

Drive Alone 716,143 687,935 -3.9% 3,984,191 3,804,674 -4.5% 

Carpool 938,056 922,662 -1.6% 3,962,840 3,898,220 -1.6% 

Transit 159,935 158,366 -1.0% 867,867 852,243 -1.8% 

Non-Motorized 156,819 152,688 -2.6% 194,493 189,483 -2.6% 
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7.0 CONCLUSIONS AND RECOMMENDATIONS 

As discussed in Chapter 2, there is a large base of literature discussing activity- and trip-

based models and their differences, but much of that literature focuses primarily on the 

theoretical aspects of the respective models. There is little research into the practicality of either 

model type that would be useful to an agency in deciding which type to use. Therefore, while 

some of the conclusions presented here address quantitative differences between the two models, 

the more relevant discussion in this chapter relates to the subjective experience of configuring 

and using each model. 

Specifically, this section focuses on potential “pain points” an agency may encounter 

when transitioning from a trip-based model to an ABM, both as discussed in the literature and 

from our experience in this research. Miller (2023) notes several reasons agencies may not be 

adopting ABMs, as discussed in Section 2.3. These findings are largely echoed in the users’ 

survey presented in Chapter 8. Some of these reasons include heavy computational requirements, 

complicated design, and lack of interoperability between areas. Additionally, switching to an 

ABM would require an agency to expend resources on staff training, though notably this is true 

for switching to any new modeling system, regardless of model type. The following sections 

address each of these difficulties in detail and discuss our experience as it relates to them. Note 

that many of the conclusions presented here are specific to the WF model and our ActivitySim 

implementation, though many conclusions can apply to trip- and/or activity-based models more 

broadly. 
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7.1 Computational Resources 

The first potential difficulty for an agency transitioning to an ABM is the computational 

resources required to run the model. This section discusses the hardware used to run both models 

in our research, as well as the model runtimes. 

We performed all runs of the WF model on a Windows 10 computer with 2 Intel Xeon 

Silver 4114 CPUs. The CPUs have a base frequency of 2.2 GHz, and 10 cores/20 threads each. 

The WF model is configured for multiprocessing in its destination and mode choice steps, and 

we configured it to use 16 threads for our scenario runs. This machine also has 128 GB of RAM 

installed. Notably, this is a specialized computer, but would not be prohibitively expensive to 

most agencies. 

There were not significant differences in runtimes between each model scenario, and 

each scenario had a runtime of 16–17 hours. However, this runtime includes the distribution 

feedback loop (including both trip distribution and a preliminary network assignment each 

iteration) and the network assignment step of the WF model. While ActivitySim does have a 

destination choice model analogous to the WF model’s trip distribution step, ActivitySim has no 

distribution feedback loop, as there is no preliminary network assignment. ActivitySim also does 

not include a final assignment step. A better runtime to report for the WF model ignores the time 

spent in the distribution feedback loop (except for one iteration of trip distribution) and the 

network assignment step. The entire distribution feedback loop took around 4 hours to complete, 

and the trip distribution step took 1–2 minutes each iteration. Additionally, the final network 

assignment step took around 2 hours, and so the WF model runtime to compare with ActivitySim 

is 10–11 hours. 
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We did most runs of ActivitySim on compute nodes hosted by Brigham Young 

University. Each node runs Red Hat Enterprise Linux 7.9, and uses an AMD EPYC 7763 CPU at 

2.45 GHz. Each ActivitySim run requested 12 CPU cores and 360 GB of RAM. A dedicated 

workstation with similar resources would again be a specialized computer, but not prohibitively 

expensive. Running in single-threaded mode (i.e., only one CPU core was utilized), each run 

took roughly 5 hours to complete, and used nearly all of the 360 GB of RAM available. With 

multi-threading enabled, however, the runtimes decreased to around an hour per scenario, using 

72% of the available CPU time across all 12 cores and 88% of the available RAM. This is a huge 

difference in runtime between the two models, though crucially ActivitySim had 3 times as much 

RAM available for use. 

ActivitySim can significantly reduce the RAM required, at the expense of increased 

runtimes, through “chunking” options (Association of Metropolitan Planning Organizations, 

2023c), where large tables are loaded into RAM in chunks rather than all at once. For 

comparison, we ran the baseline scenario in ActivitySim on the same computer used for the WF 

model scenarios, with chunking enabled to account for the reduced RAM available (128 instead 

of 360 GB). With multi-threading set to use 16 threads, and the chunk size set to 112 GB, the 

baseline ActivitySim scenario ran in about 13 hours. 

ActivitySim completed its scenario runs in a similar time to the WF model on the same 

hardware. This is counter to the idea that ABMs always require significantly increased resource 

and runtimes compared to trip-based models. Notably, our experience is certainly not universal, 

and the runtime of any model will greatly depend on several factors, including the specific 

modeling software and the hardware configuration. But at least in our case, ActivitySim 
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performed similarly to the WFRC model with the same hardware, and was an order of magnitude 

faster when provided with enough RAM to avoid chunking. 

Based on these results, an agency with a complex trip-based model looking to switch to 

an ABM would likely not need additional computational resources beyond those used for trip-

based models. However, considering the potential gains in runtime (in the case of ActivitySim, 

given enough RAM to avoid chunking), it may be worth considering buying or renting additional 

computational resources, from Amazon Web Services or other cloud computing providers. 

Computer hardware prices certainly change over time, but as of early 2024, a 12-core, 360 GB 

RAM computer (using very rough price estimates) would likely cost a few thousand dollars. 

7.2 Complication of Model Design 

The second potential difficulty is the complication of an ABM’s design. ABMs may in 

theory be more complicated than trip-based models, as ABMs model individuals rather than 

simply using aggregate values. ABMs therefore have more “moving parts” than trip-based 

models. However, these “parts” are often much more straightforward to interpret in an ABM, as 

each model step simply assigns a household or individual a specific value, such as vehicle 

ownership or the individual’s DAP. The model can then use these assigned values in subsequent 

model steps. In our ActivitySim implementation, for example, an individual’s distance to work 

has a direct effect on their remote work status, which in turn affects the DAP assigned to that 

individual. It is easy to then model a remote work “rebound effect”1 by increasing the utility of a 

non-mandatory DAP for individuals who work remotely. 

                                                 

1 See Section 6.1 
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Since trip-based models exclusively deal with aggregate data, the interpretation of each 

model step is vaguer. For example, while it may be possible in a trip-based model to model 

distance to work as it relates to remote work, it is not clear how best to do this, and may require a 

separate trip purpose and/or trip distribution model specifically for remote work. If the model 

uses a separate “remote work” trip purpose, then the trip generation step must generate a number 

of remote work “trips,” which is somewhat paradoxical. In ActivitySim, on the other hand, 

distance to work is simply another model step that “slots in” to the model pipeline. An analyst 

can adjust and calibrate this step (and most model steps) independently of the rest of the model, 

and it is much easier to understand and interpret what each model step is doing. 

Another example that highlights the difference in interpretation between models regards 

non–home-based trips. Trip-based models construct non–home-based trips in a somewhat 

arbitrary manner, especially if (like the WF model) the model does not include a non–home-

based trip redistribution step. While the idea of a trip that does not begin or end at home is 

conceptually simple, it is difficult to model concretely in a trip-based model. Homes may 

“produce” non–home-based trips, but it is not clear where the origins or destinations of those 

trips should be. By contrast, the interpretation of non–home-based trips in an ABM is trivial. 

Because an ABM organizes trips into tours, it is easy to “follow” an individual throughout the 

day; each trip has an origin and destination consistent with the other trips in the tour. “Non–

home-based” trips are not really a concept in ABMs, as individuals simply make trips, some of 

which begin or end at home. 

7.3 Model Interoperability 

A third potential difficulty is the interoperability/transferability of an ABM from one area 

to another. Collaboration between agencies could be difficult if each ABM implementation is 
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bespoke and tailored to a specific area. We found, however, that at least with ActivitySim this is 

not the case. In fact, ActivitySim is relatively easy to customize and extend. Our ActivitySim 

implementation originally did not include remote work submodels, but it was simple to copy the 

remote work models from the Michigan example configuration into our implementation. We 

made some minor changes to ensure consistent variable names, but this process was not very 

involved (see Table 7.1). Additionally, the example remote work models did not include 

provisions for different remote work rates based on job industry as in the WF model, but it was 

simple to add these.1 

The WF model does already include different remote work rates by job industry, but it 

would be difficult to add different rates based on, for example, vehicle ownership or TAZ 

average income. It is worth noting though that this difficulty may be a result of the specific way 

that the WF model is written, and may not apply equally to all trip-based models. 

7.4 Training requirements 

To change from a trip-based to an ABM, an agency will need to spend time to understand 

the model and train its staff. We analyzed the time spent on each part of the modeling process for 

this project, and this section provides discussion on this. Obviously, the actual time an agency 

would require to transition to and use an ABM depends on many factors such as specific staff 

experience, but this section is intended to give a very rough approximation of the time and effort 

needed. 

                                                 

1 The synthetic population we created has information on job industry for each worker, and so this was referenced in 

the remote work submodel in ActivitySim. 
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Table 7.1 shows the amount of time spent on creating and analyzing each scenario in both 

models. These are approximations, as detailed time logs are not available. Additionally, many of 

the tasks are interrelated or use the same code between models and scenarios, so it is sometimes 

hard to separate the time spent into individual tasks. However, Table 7.1 should serve to give a 

very rough idea of the time spent on each task. Note as well that this table shows time spent by 

one graduate and one undergraduate research assistant; more experienced modelers would likely 

require significantly less time to create and analyze similar scenarios. 

 

 

 

Table 7.1 Estimated Time Spent on Modeling Tasks 

Scenario Task 
Hours Spent on Task 

WF Model ActivitySim 

— 

Synthetic population creation (baseline) — 50 

Add remote work models to ActivitySim — 20 

Convert data to "common" structure1 60 50 

Land Use 

Scenario creation 15 20 

Trip-miles plot 5 5 

Desire lines 15 10 

Transit 

Scenario creation 10 2 

Mode split2 5 5 

Mode switching — 25 

SE summary for transit riders 10 12 

WFH 

Scenario creation 20 5 

Mode split2 5 5 

Trips and miles traveled2 5 5 
 

1This task was iterative and the “common” structure changed over time to reflect new analyses 

as they came up 
2These analyses use the “common” structure directly and so took identical time and effort 

between the two models 
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The overall time spent for ActivitySim is on par with that for the WF model, though there 

are a few important notes about this comparison: First, the scenarios in ActivitySim were 

somewhat dependent on the outputs of the WF model. ActivitySim depends on the WF model’s 

travel skims, as ActivitySim does not perform network assignment and so is unable to determine 

congested travel times on its own. In the Transit scenario, for example, the only change needed 

for ActivitySim was to use updated transit skims, which was extremely quick to implement. 

However, these updated skims came from the results of the WF model’s Transit scenario, and so 

in some sense the time spent for ActivitySim should possibly include the time spent for the WF 

model. 

Second, the tasks were divided between two research assistants largely in line with the 

model type. This means that Table 7.1 is showing the time spent with each model type by a 

specific individual. In other words, the difference between these tables is not only the model 

type, but also the individual working on the task. Any comparisons between these tables should 

therefore take this into consideration. 

One additional point to note is how we performed the analyses in each model. The 

outputs of the WF model relevant to our analyses consist mainly of matrices listing the number 

of trips between zones. There is a separate matrix for each mode and purpose, and so analyzing 

the data from the WF model requires making comparisons between several matrices for each 

scenario, and potentially aggregating values across different matrices. The only output of 

ActivitySim relevant to our analyses is a table listing every trip made in the scenario, which 

includes information on person ID, mode, time of day, purpose, etc. There is therefore only one 

table per scenario that we used in our analyses, as this table contained all the necessary 

information for each analysis. For example, to create the non–home-based desire line plot for the 
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WF model Figure 4.5, we took the non–home-based trip matrices and took the difference 

between the Land Use and baseline scenario for each mode. For the desire line plot in 

ActivitySim Figure 4.6, we took the table of trips and filtered the list to only persons whose 

home zone was in the new development. We then had a list of trips made by residents of the new 

development, aggregated these trips, and created the desire line plot. Both figures took roughly 

the same amount of effort to create, and the analysis in ActivitySim gives more detailed 

information than the equivalent analysis in the WF model. 

7.5 Recommendations 

Our experience in this research runs counter to many of the cited “pain points” of ABM 

adoption. Our ActivitySim implementation was no more computationally intensive than the WF 

model, we found the interoperability between the example San Francisco and Michigan 

ActivitySim implementations relatively easy, and the amount of time and effort required to 

understand and configure ActivitySim was on the whole rather small. Additionally, while 

ActivitySim may be more complex “under the hood” than the WF model, the interpretation of 

ActivitySim is in many ways significantly simpler. It is possible that these “pain points” are 

outdated, as there have not been many comparisons between model types in recent years (as 

discussed in Section 2.4). 

The central finding of this statement is that commonly cited pain points in the activity-

based model implementation and use may be decreasing with improvements in technology. 

There are, however, certainly still valid reasons for an agency to continue to use a trip-

based model over an ABM. Though, in our experience, the effort required to configure 

ActivitySim was not unreasonable, the effort was non-trivial. An agency would need to spend 

time and effort to re-train its staff and modify its existing workflow pipeline. Additionally, an 
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agency switching to an ABM may lose conformity with previous analyses. Comparing model 

results from before and after the transition could therefore be difficult, though this would depend 

on the specific comparisons desired. In this research, we were, for example, able to make several 

direct comparisons between ActivitySim and the WF model (see Chapters 4–6). 

It is important for agencies to realize – as stated previously – that ActivitySim and other 

activity-based models are only demand models, and rely on network skims obtained from other 

software. Many agencies that currently use ActivitySim in fact use CUBE or other similar 

software to perform assignment, though there are also several open-source network assignment 

programs such as MATSim (Horni et al., 2016) and AequilibraE (Camargo et al., 2024) that are 

also in use. Regardless of the software used for network assignment, an agency will need to 

determine how best to integrate assignment into their modeling workflow to use ActivitySim. 

The extensibility of ActivitySim includes the ability to add custom pipeline steps, so it would be 

possible to add a feedback loop between network skims/accessibility calculations and network 

assignment. It would also be possible to set up CUBE or other software to run ActivitySim. 

An additional point worth noting is that the scenarios chosen and the analyses 

demonstrated in Chapters 4–6 are only examples. The number of scenarios and analyses that we 

could theoretically create is limitless, and we chose scenarios and analyses that we thought 

would illustrate well the differences between model types. A common trend in our findings is 

that for roughly the same amount of effort, we were able to perform more in-depth analyses with 

ActivitySim compared to the WF model. This further shows that ABMs are not necessarily more 

difficult to work with than trip-based models. 

The goal of this research is not to determine which model type an agency should use, nor 

is the goal even to specify exact criteria under which an ABM should be used over a trip-based 
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model. Rather, the research presents our experience with both model types as an illustration for 

agencies to reference in determining which model type to use. We therefore encourage each 

agency to review our findings in the context of their individual circumstances, and then 

determine which model type will best fulfill their specific modeling needs. 
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8.0  PRACTITIONER INTERVIEW FINDINGS 

8.1 Research Overview  

As the first phase of the 2022 UTRAC problem statement on activity-based modeling, 

Fehr & Peers identified and held informational interviews with staff at agencies that have 

transitioned from a trip-based to an activity-based model framework and interviewed them to 

identify motivations for the transition as well as pain points faced during and after the transition 

process. The team also interviewed consultants who have developed and applied activity-based 

models in transitioning regions to understand their experience and commonalities seen across 

different agencies that have adopted activity-based modeling frameworks.  

Practitioners with varying backgrounds were identified to interview about their 

experiences in adopting an activity-based model. The final interview list consisted of:  

• 1 software vendor  

• 2 model development consultants  

• 7 MPO/regional agencies  

• 2 statewide DOTs  

• 1 research center / regional model owner  

The individuals interviewed are presented in Table A.1.  

8.2 Interview Findings  

8.2.1 Interview Outline  

Practitioners were interviewed using a semi-structured interview approach, with a set of 

prepared prompts/questions used as a jumping-off point to understand each  
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Table 8.1 Interviewees 

Individual  Organization  Organization Type  

Peter Vovsha  Bentley  Software Vendor  

Bruce Griesenbeck  Fehr & Peers   Consultant  

Mark Moran  MWCOG  MPO / regional agency  

Wu Sun  SANDAG  MPO / regional agency  

Hsi-Hwa Hu  SCAG  MPO / regional agency  

Rosella Picado  WSP  Consultant  

Joel Freedman  RSG  Consultant  

Kristen Villanueva  Alameda CTC  MPO / regional agency  

Stefan Coe  PSRC  MPO / regional agency  

Jonathan Ehrlich  Met Council (MN)  MPO / regional agency  

Rebekah Straub  Ohio DOT  DOT  

Alex Bettinardi  Oregon DOT  DOT  

Leta Huntsinger  NC ITRE  Research Center / Model Owner  

 

interviewee’s experiences and perspectives and practices around modeling within their 

organization. The outline of questions was as follows:  

• When and why did your agency decide to transition from a trip-based to an 

activity-based model?  

• What did development and adoption of the new model look like?  

• What benefits have you seen?  

• What downsides have you seen?  
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• Knowing what you do now, would you have made the same decision sooner/same 

time/later/never? (And other advice)  

Different interviews spent greater or lesser amounts of time on each of these questions, and 

questions were modified in the case of non-agency practitioners to focus on the range of 

conditions they had observed across various client/partner agencies.   

8.2.2 When and Why  

Practitioners represented development timelines ranging from the early 2000s to 2020, 

with the first adopter in 2005 and the latest expected to be completed in 2023 or 2024. Those that 

adopted early typically did so as a result of ambitious staff or agency leadership who desired to 

be at the forefront of modeling practice. Those later in the adoption process were more likely to 

report being motivated by a perceived need to be consistent with the state of the practice of other 

major MPOs, coupled with challenges around answering questions from policymakers that 

traditional four-step models were poorly equipped to answer. At times, these decisions were 

spurred by specific legislative or agency mandates, such as climate change legislation passed by 

the Oregon legislature in 2010.   

Specific policy questions that motivated this transition included the desire to better 

understand and predict the impacts of changing demographics, pricing and tolling, equity 

impacts of various policies and investments, and telecommuting/work-from-home behaviors. For 

example, the former modeling director of SACOG described having previously struggled with a 

four-step model that did not provide good answers to questions from leadership and elected 

officials regarding how an aging population would impact transportation needs.   

Policy questions around connected and autonomous vehicles, improved understanding of 

time-of-day segmentation and peak spreading phenomena, and readiness to inform dynamic 
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traffic assignment models were also mentioned as considerations in adopting activity-based 

models, but were not mentioned by practitioners as primary motivating factors.   

8.2.3 Development Processes  

Development timelines were typically 3-4 years for core model development and basic 

validation and calibration. However, practitioners reported needing additional time for internal 

modeling teams to build out needed infrastructure, skills, and familiarity with new models. In 

some cases, the overall timeline from initiating new model development to successful application 

to major planning efforts stretched up to 8 years. At one extreme, SACOG was able to conduct 

its model development process in approximately 2 years and successfully applied it to a regional 

transportation plan adopted just 2 years later. At the other end of the spectrum, SCAG began 

development efforts in 2012 but did not apply their ABM to an adopted RTP until 2020.   

Model development costs ranged greatly. Based on estimates from consultants who had 

worked with a range of agencies, some small agencies at the low end reportedly had stood up 

relatively simple activity-based models (e.g., based on previously estimated ActivitySim donor 

models, without special generators, and with high-level calibration only) for budgets of $200,000 

or less, although it was noted that these costs did not include data development conducted in-

house or under separate contracts (which would be a significant portion of the overall effort). At 

the high end, larger agencies reported spending $1-2 million for a well-calibrated model with 

special generators addressed that was considered fully production-ready. These costs did not 

include expenses associated with developing input and validation data, model evaluation, and 

internal staff time to develop competence with the new model.    

Several staff recommended that contracting for model development should be structured 

as a phased approach, with well-defined milestones for delivering different phases of the model 
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and specified static and dynamic validation thresholds that a draft model must meet or exceed 

before considering a phase complete. For example, as Oregon DOT worked with a consultant 

team to set up the RVMPO’s model, three phases of validation were built in with pre-specified 

static validation thresholds, as well as a set of five example projects to be implemented as a 

dynamic validation test. This approach was reported to have been useful in exposing problems 

and allowing correction prior to adopting the model.    

Where practitioners encountered significant delays in meeting intended model 

development and adoption schedules, repeatedly cited causes of delay included challenges in 

obtaining needed input data, as well as difficulties encountered by staff in getting up to speed on 

new model workflows and addressing errors and software bugs.   

8.2.4 Resource Needs  

In-house modeling teams ranged from small teams of 3 FTEs to over 15 FTES, and 

included modeling, GIS, and land-use forecasting teams. Most MPOs used limited ongoing 

consultant support, but did pay vendor fees or ActivitySim consortium dues as well as software 

licenses. One exception, the Alameda County Transportation Commission, is heavily reliant on 

consultant support to both develop and apply models.    

MPOs utilize a mix of cloud-based and physical computing resources, and several larger 

agencies maintain multiple models to varying degrees for different purposes and stakeholders. 

Agencies using Amazon Web Services (AWS) reported that they were able to achieve reduced 

runtimes compared to previous configurations, as well as reducing burdens that would otherwise 

be placed on their organization IT teams. However, one agency reported that they had seen 

additional errors or inconsistencies in model results occur when using cloud computing, 

indicating a need for testing on the intended configuration during the model development 
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process. While specific configurations and resources varied across agencies, most practitioners 

emphasized that computing needs were secondary to model development, data collection, and 

staffing needs in terms of overall budget impact.  

8.2.5 ABM Benefits  

Interviewees highlighted several types of analyses that a shift to an ABM allowed, such 

as assessing equity impacts of policy choices, understanding road pricing impacts on various 

market segments, evaluating emerging modes and reflecting their anticipated operating 

characteristics, better quantifying greenhouse-gas-emissions scenarios, and understanding 

impacts of changing demographics. Some interviewees also commented on additional benefits 

such as additional time of day analyses and finer-grained zones that would better model active 

transportation, though those benefits were more a result of a more highly specified model than 

intrinsically tied to an ABM. In the post-COVID-19 era, the ability to better reflect work from 

home and telecommute modes was also raised as a significant value-add for scenario planning.   

Multiple practitioners noted that enhanced visualization tools, such as automating 

accessibility mapping and side-by-side scenario-comparison dashboards, were highly valued 

outcomes of model enhancement efforts. While not a core model function, these auxiliary tools 

helped model users and planners easily communicate insights enabled by expanded functionality 

of an ABM.   

8.2.6 ABM Downsides/Issues  

Practitioners commented that with the greater power of an ABM there was also a need for 

additional staff with higher skill requirements. Many practitioners mentioned the relative 

difficulty of understanding the “under the hood” functioning of ABMs compared to trip-based 
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models. Practitioners highlighted the need to develop post-processing scripts to fully leverage the 

potential of detailed activity pattern data and evaluate key policy questions. In smaller, less-well-

staffed organizations, the trade-off between building up these tools and supporting infrastructure 

and meeting more immediate plan/project-level modeling needs was a challenge.   

Several practitioners mentioned that being able to distinguish between signal and noise in 

model outputs was a challenge, especially when trying to evaluate relatively small changes to 

infrastructure, land use/socioeconomics, or policy in the context of a large regional model. Twin 

Cities Metropolitan Council staff mentioned this challenge as both a technical challenge and a 

potential political issue, as staff must evaluate whether they can trust model results to withstand 

scrutiny in the context of high-profile projects.   

A related challenge observed by one consultant was that where advanced models provide 

the opportunity to conduct scenario testing of emerging trends or technologies, agency staff may 

not always be comfortable presenting decision makers with ranges of results that reflect the 

uncertainty behind these assumptions. These communication challenges can lead to staff not 

taking advantage of new model capabilities. If investments are made in these functions, planning 

and forecasting staff should consider ahead of time how much effort to invest in complex 

depictions of technologies that are not well understood (e.g., operational details of autonomous 

vehicles or drone delivery), as well as whether and how they can communicate their modeling 

assumptions and results in a way that can usefully inform decision-making.   

Potential lock-in with a given vendor was also highlighted as a potential issue, and one 

reason why ActivitySim has been a more favored approach by agencies adopting ABMs in recent 

years.   
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8.2.7 Mixed Impacts  

Interviewees also highlighted a number of items where the impact of an ABM was mixed 

between positives and negatives.   

Practitioners reported little or no real benefit for “bread-and-butter” projects in terms of 

traffic assignment; several side-by-side comparisons of link-level validation results between old 

and new model versions mentioned by interviewees showed comparable results. Some agencies 

reported that their ABMs provided improvements to model results for transit and active modes, 

but this was not a consistent finding. For example, Met Council staff mentioned that their 

ABM’s mode choice module performed worse than the previous model, causing them to use a 

regional STOPS model for transit analysis purposes instead of the regional travel model.  

The input and calibration data needs of different models were reported to be highly 

variable, with some agencies having increased their investment in disaggregate land use data, 

travel surveys and transit on-board surveys, and passive mobile data. Others reported limited 

differences in their input data needs relative to previous trip-based models, indicating that these 

differences are more a question of model design choices and level of detail desired than an 

inherent function of ABMs.   

Some models used parcel-level or microzone-level land use data, while others continued 

to use pre-existing TAZ geographies as their unit of analysis. Entities that use parcel-level as the 

basis for their models noted that developing and maintaining this data is a major effort, and in 

one case transitioned from parcel-based to microzone-based geographies in a 2nd generation 

model to reduce complexity.   

Post-processing of synthetic population travel diaries and generally building an 

understanding of how to mine output datasets was brought up by many practitioners as a 
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substantial opportunity, but also a significant technical challenge that required more technically 

capable staff and significant training and investment in building up necessary tools and scripts to 

make analyzing these trip patterns possible and an integrated part of the forecasting workflow.   

Practitioners were asked whether the transition to ABMs resulted in changes to the 

available pool of consultants able to contribute to modeling work. Responses to this question 

were mixed, with some interviewees recalling that travel-demand modeling practitioners quickly 

learned how to work with ABMs and did not see any significant obstacles. Others reported that 

usability challenges resulted in concerns and objections to transitioning to the ABM as a 

production model from consultant practitioners (or in one instance, other regional agencies). One 

interviewee noted that while some consultants withdrew from modeling work after adopting an 

ABM, other consultants from national firms became more interested in working in the market, 

with the net result that the overall quality of modeling expertise in the region improved over 

time.     

8.2.8 Overall Evaluation  

When asked if, knowing what they do now, they would choose to adopt an activity-based 

model again for their agency under the same set of needs and circumstances, nearly all 

interviewees responded affirmatively. The few exceptions that practitioners could point to of 

agencies that regretted this decision were small MPOs with limited staff capacity and early 

adopters who got ahead of well-developed practice and would have benefitted from waiting for 

modeling infrastructure to become better developed.  

Several agencies expressed enthusiasm for in-progress or planned efforts to transition 

their models from proprietary platforms to ActivitySim. Practitioners expressed optimism that 

ActivitySim may fix key problems with existing models, improve model runtimes, and reduce 
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lock-in/dependence on vendors and consultants to respond to issues. For example, Twin Cities 

Metropolitan Council staff mentioned that phase 1 work to adopt PopulationSim, ActivitySim’s 

population synthesizer, has been very successful. Future follow-up with agencies currently 

transitioning to ActivitySim-based models may be useful in confirming whether these hopes 

have been realized.    

Issues that interviewees raised as regrets or pain points included:  

• Using parcel-based land use data: One practitioner reflected on as being too laborious 

to develop and maintain for negligible benefits to model results, while another agency 

noted that while they maintain parcel-based land use data, they have simplified their 

ABM to use aggregated microzone-level inputs instead.  

• Adding too many complex features to the model, or investing in a high level of 

complexity in modeling speculative modes where operational characteristics are 

currently unclear.  

• Inefficient code and long model runtimes.  

• Poor tools for dealing with population/land use changes, which was noted as a 

significant pain point in several older models.  

A comparison of several key characteristics of the agencies interviewed and their models is 

presented in the matrix below. 
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Table 8.2 Agency Comparison Matrix 

Organization Reason for adoption 

Timeline 

Cost 
Began 

Development 
Draft Model 

Production 

Model 

Retired Old 

Model 

2nd 

Generation 

SACOG 

Land use responsiveness, 

capturing aging population 

impacts 

2005 2006 2008 2008 2012  

MWCOG 
Achieving state of practice 

model, match peer agencies 
2015 2023 2023* Still active  $900k 

SANDAG 
State guidelines, equity, VMT 

performance monitoring 
2009 2013 2015 2015 2016 $1M 

SCAG State guidelines 2012 2016-17 2020 Plan to retire  $2M 

Alameda CTC 
Conformity with larger 

regional model 
2021 2023* 2024* Still active  $1.2M 

PSRC 
GHG reductions, road user 

charging, transit 
2006 2012 2018 Still active 2025 $1M+ 

Met Council  Equity, road user charging 2012 2014 2015 2016-17 Ongoing 
$1M (1st 

gen), 

Ohio DOT Road user charging Early 2000s  2005 2005 2013 Various 

NC ITRE Answer policy questions 2019 2020-21 2021 Still active  $350k 

Oregon DOT GHG legislation, equity 2014 (RVMPO) 2017 2017 Still active 2030*  

* Anticipated dates 
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(continued from previous table) 

Organization 
Model Platform Staff Consultant Support Data Requirements 

1st Generation 2nd Generation Notes    

SACOG 
DAYSIM, 

Cube 
  5 TDM Yes, maintenance 

Parcel-level land 

use/SE data 

MWCOG ActivitySim   15 in TDM TBD 
Need land use model,  

TAZs are ok 

SANDAG 
CTRamp, 

TransCAD 

ActivitySim, 

EMME 
 5 LU, 13 TDM 

Yes, limited on 

demand assistance 

Microzone land 

use/SE data 

SCAG 
CTRamp, 

TransCAD 

ActivitySim, 

TransCAD 

Used alongside 4-step 

model 
2 SE, 10 TDM 

No or limited 

support 

Higher level of effort, 

more challenging SE 

data development 

Alameda CTC CTRamp  Tied into MTC model with 

more zonal detail 

1 program 

manager 

Fully reliant on 

consultant support 
Similar to trip based 

PSRC 
DAYSIM, 

EMME 
ActivitySim  LU 4, TDM 5, 4 

HHTS 

Yes, significant 

support 

Same but more finely 

detailed 

Met Council 

(MN) 
TourCast ActivitySim  3 application, 2 

LU 

Prior CS on-call, 

currently none 

Similar, frequent 

travel survey 

Ohio DOT 
CTRamp, 

Cube 
 

Disaggregate tour-based 

model. Pop synth, trip list 

moving to simple ABM 

3 DOT plus 

MPO staff 
Yes, limited on-demand assistance 

NC ITRE TransCAD  Disaggregate trip-based 

model 

2 TDM plus 

external SE 

Yes, recurring 

survey work 

Additional household 

surveys 

Oregon DOT 
CTRamp, 

TransCAD 
ActivitySim 

Statewide is currently tour-

based. Once all MPO 

models are ABM, intended 

to adopt statewide ABM. 

7 development,  

4 applications 

No or limited 

support 

More data, represent 

variables more 

explicitly 
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Based on a synthesis of the various practitioner interviews and agency/model 

characteristics, several key themes emerged as important considerations for Utah’s MPOs and 

statewide agencies in considering their strategies for model development and enhancement.  

8.2.9 Clarity on Goals of Advanced Models  

Multiple practitioners emphasized that Utah’s public agencies should begin their decision 

process on the directions for their model roadmap not from the question of “What is the best type 

of model?” but rather “What questions do we need our model to answer?” Practitioners 

repeatedly noted that activity-based models do not provide an inherent advantage in accurately 

depicting and forecasting network volumes, and stressed that the primary value of a more 

complex and costly model is the ability to answer new policy questions in a valid way, including 

topics discussed under “When and Why” above.   

Accordingly, several interviewees noted that a clear understanding of the goals of an 

enhanced model can and should guide what model elements are built to a high degree of detail, 

and which should be excluded or adopted (at least initially) in a more simplified form. As one 

Twin Cities Metropolitan Council modeler said, “models need to earn complexity,” and during 

the scoping and design phase it’s valuable to consider whether more sophisticated components 

will result in meaningfully improved results for likely use cases. Another practitioner, Wu Sun, 

reported that SANDAG had concluded that its current model version had elements that added 

more complexity than they were worth, and has added projects to simplify these modules to their 

development roadmap.   

Takeaways: Prior to UDOT or partner agencies pursuing development of activity-based 

models, modeling staff, planners, and agency leadership should collaborate on identifying key 

policy needs that may require travel model analyses and which current modeling paradigms are 



 

 109 

inadequate to address. These policy questions and priorities should drive decision-making about 

whether activity-based models are a good solution, and if so what design features should be 

prioritized.    

8.2.10 Differences Between Early and Late Adopters  

Interviews with practitioners confirmed a trend that earlier models (those developed in 

the 2000s or early 2010s) tended to be more bespoke, required a much higher level of investment 

in programming key model components and estimating the model, and led to staff facing greater 

challenges around model usability.   

For example, the SACOG model, the first version of which was completed in 2007, was 

described as having received “withering criticism” from forecasting consultants in the local 

market as being very challenging to use in applications where land use changes needed to be 

modeled. While best practices have been found, these efforts remain challenging and require 

multiple times as much budget or staff time to conduct compared to their prior model.   

To mitigate these issues, some agencies have invested in major overhauls or 

redevelopment of subsequent versions of their models, including transitioning from proprietary 

platforms such as CTRamp to ActivitySim.   

Later adopters were less likely to cite the same level of difficulty with their models, 

driven both by model development consultants having gained more experience through ‘learning 

by doing’ and greater availability of ‘donor models’ from other regions that can be adapted for a 

new region. Due to the availability of pre-existing model frameworks, multiple interviewees 

recommended that Utah agencies should ensure that they take advantage of existing resources 

and ensure they do not pay development costs for software that is available from vendors or 

other agencies.   
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Takeaways: Major usability issues that have been encountered by practitioners in older 

activity-based models are not representative of what Utah agencies can expect from a state-of-the 

practice model using more modern technology.  

8.2.11 Staff/Agency Capacity  

The size of an interviewee’s agency tended to correlate with more positive descriptions of 

their modeling practice and experiences with activity-based models. At one extreme, groups with 

12-15 modeling staff were more able to avoid overreliance on consultants, have separate model 

development and model application teams, and build technical infrastructure that improves 

model usability. They also appeared to have more capacity to develop detailed model input data 

that take full advantage of ABMs’ potential. As one practitioner noted, “the power of a 

disaggregate model comes from disaggregate socioeconomic inputs,” and those with larger staffs 

and dedicated land use / socioeconomic forecasting teams were better equipped to develop those 

inputs with a high level of detail, as well as leveraging detailed survey data. Opinions differed 

between practitioners on whether having separate model development and model application 

teams is advantageous.   

At the opposite end, Ohio DOT reported that small MPOs with one or less than one FTE 

devoted to modeling often lack the capacity to run an activity-based model (and in some cases 

struggle to run or maintain a four-step model), while one consultant mentioned examples of a 

DOT and MPO that developed and then abandoned ABMs. In other cases, practitioners brought 

up examples of ABMs that have been developed and remain in use as a ‘model of record’ for 

regional planning and air-quality conformity processes, but are not used on a day-to-day basis by 

agencies for project-level or sub-regional planning processes due to their complexity (Baltimore 

and Chicago’s MPO models were brought up as examples).   
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MPOs that have successfully deployed ABMs with small staff more frequently reported 

difficulties or persistent downsides to their models, including challenges with incorporating land 

use changes, achieving good performance from certain model modules (e.g., mode choice), 

adequately distinguishing signal vs. noise in model outputs when considering relatively small 

projects or policy changes, and usability problems (e.g., excessive runtimes).   

Takeaways: If Utah’s agencies decide to pursue development of activity-based models, 

recruitment, training, and retention of skilled technical staff should be a key priority. Additional 

FTEs may be required in order to successfully apply and maintain ABMs. Caution should be 

used in developing ABMs for smaller agencies, which may not have adequate staffing and 

resources to make good use of a more complex and labor-intensive modeling paradigm.    

8.3 Development Timeline and Model Transition Process  

For many agencies, model development timelines are closely tied to their regional 

transportation planning and air-quality conformity timelines. A key difference in approaches to 

ABM adoption is whether agencies attempt to develop and complete an ABM to the point that it 

is ready for planning use within one four-year cycle, or whether this process is extended across 

multiple cycles. While some practitioners were able to achieve this compressed development 

timeline, the general consensus was that extending model development over two plan cycles is 

preferrable in terms of providing the agency adequate time to ensure the model is adequately 

validated and calibrated, and staff are sufficiently trained to deploy the model correctly and take 

advantage of new capabilities. This approach necessarily entails continuing to invest in 

maintaining the previous model through a longer duration than would be necessary under a more 

accelerated timeline.  
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As mentioned in the ‘Development Processes’ section above, several practitioners 

emphasized that clear benchmarks for both static and dynamic validation that a new model 

should be built into model development contracts at multiple milestones in the overall 

development process. In the event that a draft model does not meet these benchmarks, the owner 

agency should not accept the model as complete until validation benchmarks are met.    

Takeaways: Utah agencies should be aware that development of an application-ready 

ABM in time for the next RTP cycle (beginning in 2027) would be a challenging development 

timeline and result in significant risk to those planning processes. Procurement documents and 

contracts should clearly lay out static and dynamic validation targets that must be met in order 

for owner agencies to accept new models as complete. Finally, agency staff beginning a model 

development process should plan for how long existing models will be maintained before they 

are retired and what resources will be required to do so; periodically revisit those plans as the 

model development and application process continues; and communicate those plans to model 

users and stakeholders.   

8.3.1 Model Infrastructure  

As previously mentioned, activity-based models varied substantially in terms of both 

model complexity and the level of investment in supporting scripts and tools to help 

modelers/analysts use the ABM for various tasks. Some of the supporting infrastructure that 

practitioners noted had been significant value-adds for their agencies included:  

• High-quality population synthesizers: Population synthesis typically occurs 

outside of the main model flow, and ensuring that usable tools exist for manipulating 

disaggregate populations was mentioned as an important priority by one consultant. 
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Agencies that have not invested in this infrastructure, such as DRCOG and SACOG, 

were highlighted as causing significant ongoing challenges for users.   

• Model documentation: Practitioners who had received models with limited 

documentation reported substantial difficulties in getting staff trained and fully 

competent to use the model and navigate operational issues, requiring substantial 

internal effort to produce adequate documentation. One practitioner emphasized that 

documentation should occur throughout the model development process, rather than 

being a final deliverable created separately from the main work effort.  

• Input checking: Building in automated tools to check inputs for validity prior to 

launching the main model stream was recommended by PSRC staff as a valuable 

method of avoiding lost working time when running large models with long 

runtimes. This approach ensures that many input errors can be caught immediately, 

rather than putting multiple hours into an overnight model run.   

• Output visualization and mapping tools: While these tools are not inherent to 

activity-based models, multiple practitioners mentioned that visualization tools 

developed as part of their model adoption process provided a high level of 

immediate value in being able to easily communicate model results to decision 

makers. Additionally, Oregon DOT reported that a side-by-side visualization tool 

was valuable for comparing new vs. old models as well as model vs. survey data for 

validation/calibration purposes.   

• Variable sampling rates: The foundation of activity-based models is generation of 

a synthetic population sample. By default, this sample is equal to 100% of the 

estimated or projected actual population of the model region. However, multiple 

practitioners mentioned that building in the flexibility to adjust the sampling rates of 
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the activity-based model (in terms of the percentage of the synthetic population 

sampled) for different use cases was valuable. With this functionality, less or more 

than 100% of the true population is generated as a synthetic population, and then 

trips are scaled accordingly for assignment purposes (for example, a 50% sample 

rate would be expanded by a factor of 2). Less than 100% sample rates allow for 

faster model runtimes for early screening (e.g,. of major policy moves or early-stage 

evaluation of large numbers of projects or scenarios), while greater than 100% 

sample rates can reduce simulation variance between runs and provide greater 

confidence that differences between model runs are not driven by model noise.  

Takeaways: While completing all of the above infrastructure may not be feasible during an 

initial model development contract, population synthesis and documentation should be 

prioritized from the beginning. Other assets that may not be completed during the initial 

development process should be prioritized for future updates within a model development 

roadmap.   

8.3.2 Collaboration Frameworks  

Many practitioners referred to the importance of developing venues for collaboration 

between the model owner agency and other key stakeholders, including municipalities, partner 

agencies, and consultants. A common theme was that ongoing working groups were highly 

useful for disseminating key information to the range of model users across a region, especially 

in the transition process as practitioners must adjust from a previous modeling paradigm to a new 

(and more complex) activity-based framework. Entities frequently reported meeting on an annual 

to quarterly basis to deliver training sessions, introduce new model updates/functionalities, and 

share project examples or potential directions for future practice.    
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An additional opportunity for collaboration in the model development and adoption 

process that was recommended by multiple interviewees was building in a peer or expert review 

panel into the model adoption process. Rebekah Straub of Ohio DOT mentioned that having a 

separate contract for an expert reviewer was valuable not only to ensure a new model was 

correctly implemented and yielded reasonable results, but also as way to guarantee that multiple 

consultants were familiar with and able to run the model prior to adoption. SCAG reported using 

this approach during a model enhancement process subsequent to adopting their ABM.   

For DOTs that are responsible for maintaining or interfacing with multiple models, a key 

factor raised by one informant was the importance of standardization between various models in 

terms of software versions and compatibility with post-processors and other model infrastructure. 

Emphasizing this interoperability through ongoing collaboration can avoid duplicative effort or 

ongoing compatibility challenges.   

Takeaways: The Utah Model Users Group (MUG) would likely be an appropriate venue 

for ongoing collaboration, knowledge sharing, and training on any new models developed in the 

state. Any agencies developing new models should strongly consider contracting for expert 

review at key milestones in the development process. If multiple models across the state 

transition from trip-based to activity-based, consistency between these models and sharing of 

technical resources should be prioritized.  

8.3.3 Hybrid Models  

Hybrid travel demand models represent an alternative to both traditional 4-step models 

and activity-based models.  These models integrate more disaggregate data into the estimation of 

the model behavior process but contain other model processes that are more simplified which 

reduce the computational needs and processing time compared to activity-based models.  Some 
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hybrid models require the same input needs as traditional 4-step models, requiring housing and 

employment land use inputs by TAZ that are then converted into a synthetic population during 

the model process. Hybrid models may also incorporate machine learning and big data to better 

represent travel behavior while not requiring a full travel diary for each synthetic resident of the 

model area.  

Hybrid models are now in use in places such as Charleston, SC; Hampton Roads, VA; 

Knoxville, TN; Indianapolis, IN; and for statewide models in North Carolina, Tennessee, 

Michigan, Iowa, Nebraska, and New Mexico.9  While these models vary in complexity, they all 

have a common theme in that the models typically begin with a population synthesis, followed 

by disaggregate model steps, then aggregate trip distribution and assignment processes.  

A contemporary version of a hybrid travel demand model has just been completed for the 

Triangle Regional Model (TRM) in the Raleigh-Durham Metropolitan region of North Carolina.  

This model utilizes machine learning processes for person-level trip production modeling to 

specify a large number of discrete variables, nested logit destination choice models, and linked 

non-home based and home-based trips by location and mode.  Figure A.1 (below) shows a 

summary of the model process.  

During the practitioner surveys, developers of the new Triangle Regional Model were 

interviewed to understand the impetus for transitioning to a hybrid model rather a full ABM.  

Rationale for selecting a hybrid model included:  

                                                 

9 An Advanced State-of-the-Practice Hybrid Travel Demand Model for the North Carolina 

Research Triangle Region; Bernardin, Ward, Huntsinger, Balakrishna, and Sundaram; 2023; 

https://www.caliper.com/pdfs/trbam-23_trm.pdf   
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• Did not require substantial changes to how TAZ-level data was prepared and 

updated.  

• Represents a step towards activity-based without having to introduce all of the 

complexity and drawbacks of a full ABM (including cost, run time, data needs, 

and overall complexity).  

• Emphasis was placed on accessibility and disaggregate population which still 

allows for equity analysis and improved non-motorized modeling.   

• Model development and implementation costs were less than $500K (excluding 

survey data or staff support hours) and the process was completed in 

approximately 18 months.   

Development of a hybrid travel demand model can provide an intermediate step from trip-based 

to activity-based models, allowing agency staff and other users time to gain familiarity with 

some elements of an activity-based framework with a smaller increase in complexity. 

Development and adoption of a hybrid model may also allow for an accelerated timeline, such 

that a new model can be developed and staff can acquire proficiency with it within one regional 

planning cycle.   
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Figure 8.1 Triangle Regional Model Hybrid Structure 

  

Takeaways: If Utah agencies determine that current trip-based models do not adequately 

meet their modeling needs, they should consider whether hybrid model designs may adequately 

meet near-to-mid-term policy priorities compared to a full activity-based model, and if so weigh 

the pros and cons between:  

• Developing and adopting a hybrid model as a long-term solution  

• Developing and adopting a hybrid model as a first step towards a planned transition  

• Transitioning directly to a full activity-based model.  
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